Progranulin promotes diabetic fracture healing in mice with type 1 diabetes

Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by insulin deficiency, and patients with diabetes have an increased risk of bone fracture and significantly impaired fracture healing. Proinflammatory cytokine tumor necrosis factor‐alpha is significantly upregulated in diabetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2020-01, Vol.1460 (1), p.43-56
Hauptverfasser: Wei, Jianlu, Zhang, Lei, Ding, Yuanjing, Liu, Ronghan, Guo, Yuqi, Hettinghouse, Aubryanna, Buza, John, De La Croix, Jean, Li, Xin, Einhorn, Thomas A., Liu, Chuan‐ju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 43
container_title Annals of the New York Academy of Sciences
container_volume 1460
creator Wei, Jianlu
Zhang, Lei
Ding, Yuanjing
Liu, Ronghan
Guo, Yuqi
Hettinghouse, Aubryanna
Buza, John
De La Croix, Jean
Li, Xin
Einhorn, Thomas A.
Liu, Chuan‐ju
description Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by insulin deficiency, and patients with diabetes have an increased risk of bone fracture and significantly impaired fracture healing. Proinflammatory cytokine tumor necrosis factor‐alpha is significantly upregulated in diabetic fractures and is believed to underlie delayed fracture healing commonly observed in diabetes. Our previous genetic screen for the binding partners of progranulin (PGRN), a growth factor‐like molecule that induces chondrogenesis, led to the identification of tumor necrosis factor receptors (TNFRs) as the PGRN‐binding receptors. In this study, we employed several in vivo models to ascertain whether PGRN has therapeutic effects in diabetic fracture healing. Here, we report that deletion of PGRN significantly delayed bone fracture healing and aggravated inflammation in the fracture models of mice with T1DM. In contrast, recombinant PGRN effectively promoted diabetic fracture healing by inhibiting inflammation and enhancing chondrogenesis. In addition, both TNFR1 proinflammatory and TNFR2 anti‐inflammatory signaling pathways are involved in PGRN‐stimulated diabetic fracture healing. Collectively, these findings illuminate a novel understanding concerning the role of PGRN in diabetic fracture healing and may have an application in the development of novel therapeutic intervention strategies for diabetic and other types of impaired fracture healing. In this study, we employed wild‐type C57BL/6 and C57BL/6 background mice genetically modified for the absence of progranulin (PGRN) or tumor necrosis factor receptors and determined the role of endogenous and recombinant PGRN in diabetic fracture healing as well as the mechanism involved.
doi_str_mv 10.1111/nyas.14208
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000481654400001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347350611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4488-5414d3e23ca703b80617f9baeec376db4c6ab96c4716dc63b37ea9864d948ffe3</originalsourceid><addsrcrecordid>eNqN0EFPIyEYBmBiNFpdL_4AM4k3zSgMFJiLiWlW3WjUZHcPngjDfNNiWqjArOm_F2230YuRCyQ8fLx5ETog-JTkdeYWOp4SVmG5gQZEsLrknFabaICxEKWsK7qDdmN8wphUkolttEOzpsNaDtDNQ_DjoF0_ta6YBz_zCWLRWt1AsqbogjapD1BMQGcxLrKaWQPFi02TIi3mUJCVhvgDbXV6GmF_te-hv5c__4yuy9v7q1-ji9vSMCZlOWSEtRQqarTAtJGYE9HVjQYwVPC2YYbrpuaGCcJbw2lDBehactbWTHYd0D10vpw775sZtAZcCnqq5sHOdFgor636fOPsRI39PyUJlULUecDRakDwzz3EpJ58H1zOrCrKBB3mSCSr46UywccYoFv_QLB6K169Fa_ei8_48GOmNf3fdAZyCV6g8V00FpyBNcMYM0n4kLF8wmRkk07Wu5HvXcpPT77_NGuy0nYKiy8yq7vHi9_L9K93F7Ab</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347350611</pqid></control><display><type>article</type><title>Progranulin promotes diabetic fracture healing in mice with type 1 diabetes</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Wei, Jianlu ; Zhang, Lei ; Ding, Yuanjing ; Liu, Ronghan ; Guo, Yuqi ; Hettinghouse, Aubryanna ; Buza, John ; De La Croix, Jean ; Li, Xin ; Einhorn, Thomas A. ; Liu, Chuan‐ju</creator><creatorcontrib>Wei, Jianlu ; Zhang, Lei ; Ding, Yuanjing ; Liu, Ronghan ; Guo, Yuqi ; Hettinghouse, Aubryanna ; Buza, John ; De La Croix, Jean ; Li, Xin ; Einhorn, Thomas A. ; Liu, Chuan‐ju</creatorcontrib><description>Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by insulin deficiency, and patients with diabetes have an increased risk of bone fracture and significantly impaired fracture healing. Proinflammatory cytokine tumor necrosis factor‐alpha is significantly upregulated in diabetic fractures and is believed to underlie delayed fracture healing commonly observed in diabetes. Our previous genetic screen for the binding partners of progranulin (PGRN), a growth factor‐like molecule that induces chondrogenesis, led to the identification of tumor necrosis factor receptors (TNFRs) as the PGRN‐binding receptors. In this study, we employed several in vivo models to ascertain whether PGRN has therapeutic effects in diabetic fracture healing. Here, we report that deletion of PGRN significantly delayed bone fracture healing and aggravated inflammation in the fracture models of mice with T1DM. In contrast, recombinant PGRN effectively promoted diabetic fracture healing by inhibiting inflammation and enhancing chondrogenesis. In addition, both TNFR1 proinflammatory and TNFR2 anti‐inflammatory signaling pathways are involved in PGRN‐stimulated diabetic fracture healing. Collectively, these findings illuminate a novel understanding concerning the role of PGRN in diabetic fracture healing and may have an application in the development of novel therapeutic intervention strategies for diabetic and other types of impaired fracture healing. In this study, we employed wild‐type C57BL/6 and C57BL/6 background mice genetically modified for the absence of progranulin (PGRN) or tumor necrosis factor receptors and determined the role of endogenous and recombinant PGRN in diabetic fracture healing as well as the mechanism involved.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/nyas.14208</identifier><identifier>PMID: 31423598</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Animal models ; Animals ; Autoimmune diseases ; Binding ; Bone healing ; Chondrogenesis ; Chondrogenesis - drug effects ; Cytokines ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (insulin dependent) ; Diabetes Mellitus, Experimental - pathology ; Diabetes Mellitus, Type 1 - pathology ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Fracture Healing - drug effects ; Fractures ; Gene Deletion ; Genetic screening ; Growth factors ; Healing ; Health risks ; Humans ; impaired fracture healing ; In vivo methods and tests ; Inflammation ; Inflammation - pathology ; Insulin ; Mice ; Multidisciplinary Sciences ; progranulin ; Progranulins - deficiency ; Progranulins - pharmacology ; Proto-Oncogene Proteins c-akt - metabolism ; Receptors ; Receptors, Tumor Necrosis Factor - metabolism ; Recombinant Proteins - pharmacology ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Signal Transduction - drug effects ; TNFR1 ; TNFR2 ; TOR Serine-Threonine Kinases - metabolism ; Tumor necrosis factor ; Tumor necrosis factor receptors ; Tumor Necrosis Factor-alpha - metabolism ; Tumor necrosis factor-TNF ; type 1 diabetes</subject><ispartof>Annals of the New York Academy of Sciences, 2020-01, Vol.1460 (1), p.43-56</ispartof><rights>2019 New York Academy of Sciences.</rights><rights>2020 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000481654400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4488-5414d3e23ca703b80617f9baeec376db4c6ab96c4716dc63b37ea9864d948ffe3</citedby><cites>FETCH-LOGICAL-c4488-5414d3e23ca703b80617f9baeec376db4c6ab96c4716dc63b37ea9864d948ffe3</cites><orcidid>0000-0002-7181-8032 ; 0000-0002-5075-4885 ; 0000-0003-1846-4375 ; 0000-0002-7414-5734 ; 0000-0002-6897-0279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnyas.14208$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnyas.14208$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,28253,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31423598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Jianlu</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Ding, Yuanjing</creatorcontrib><creatorcontrib>Liu, Ronghan</creatorcontrib><creatorcontrib>Guo, Yuqi</creatorcontrib><creatorcontrib>Hettinghouse, Aubryanna</creatorcontrib><creatorcontrib>Buza, John</creatorcontrib><creatorcontrib>De La Croix, Jean</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Einhorn, Thomas A.</creatorcontrib><creatorcontrib>Liu, Chuan‐ju</creatorcontrib><title>Progranulin promotes diabetic fracture healing in mice with type 1 diabetes</title><title>Annals of the New York Academy of Sciences</title><addtitle>ANN NY ACAD SCI</addtitle><addtitle>Ann N Y Acad Sci</addtitle><description>Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by insulin deficiency, and patients with diabetes have an increased risk of bone fracture and significantly impaired fracture healing. Proinflammatory cytokine tumor necrosis factor‐alpha is significantly upregulated in diabetic fractures and is believed to underlie delayed fracture healing commonly observed in diabetes. Our previous genetic screen for the binding partners of progranulin (PGRN), a growth factor‐like molecule that induces chondrogenesis, led to the identification of tumor necrosis factor receptors (TNFRs) as the PGRN‐binding receptors. In this study, we employed several in vivo models to ascertain whether PGRN has therapeutic effects in diabetic fracture healing. Here, we report that deletion of PGRN significantly delayed bone fracture healing and aggravated inflammation in the fracture models of mice with T1DM. In contrast, recombinant PGRN effectively promoted diabetic fracture healing by inhibiting inflammation and enhancing chondrogenesis. In addition, both TNFR1 proinflammatory and TNFR2 anti‐inflammatory signaling pathways are involved in PGRN‐stimulated diabetic fracture healing. Collectively, these findings illuminate a novel understanding concerning the role of PGRN in diabetic fracture healing and may have an application in the development of novel therapeutic intervention strategies for diabetic and other types of impaired fracture healing. In this study, we employed wild‐type C57BL/6 and C57BL/6 background mice genetically modified for the absence of progranulin (PGRN) or tumor necrosis factor receptors and determined the role of endogenous and recombinant PGRN in diabetic fracture healing as well as the mechanism involved.</description><subject>Animal models</subject><subject>Animals</subject><subject>Autoimmune diseases</subject><subject>Binding</subject><subject>Bone healing</subject><subject>Chondrogenesis</subject><subject>Chondrogenesis - drug effects</subject><subject>Cytokines</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes Mellitus, Experimental - pathology</subject><subject>Diabetes Mellitus, Type 1 - pathology</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Fracture Healing - drug effects</subject><subject>Fractures</subject><subject>Gene Deletion</subject><subject>Genetic screening</subject><subject>Growth factors</subject><subject>Healing</subject><subject>Health risks</subject><subject>Humans</subject><subject>impaired fracture healing</subject><subject>In vivo methods and tests</subject><subject>Inflammation</subject><subject>Inflammation - pathology</subject><subject>Insulin</subject><subject>Mice</subject><subject>Multidisciplinary Sciences</subject><subject>progranulin</subject><subject>Progranulins - deficiency</subject><subject>Progranulins - pharmacology</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Receptors</subject><subject>Receptors, Tumor Necrosis Factor - metabolism</subject><subject>Recombinant Proteins - pharmacology</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Signal Transduction - drug effects</subject><subject>TNFR1</subject><subject>TNFR2</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Tumor necrosis factor</subject><subject>Tumor necrosis factor receptors</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>type 1 diabetes</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqN0EFPIyEYBmBiNFpdL_4AM4k3zSgMFJiLiWlW3WjUZHcPngjDfNNiWqjArOm_F2230YuRCyQ8fLx5ETog-JTkdeYWOp4SVmG5gQZEsLrknFabaICxEKWsK7qDdmN8wphUkolttEOzpsNaDtDNQ_DjoF0_ta6YBz_zCWLRWt1AsqbogjapD1BMQGcxLrKaWQPFi02TIi3mUJCVhvgDbXV6GmF_te-hv5c__4yuy9v7q1-ji9vSMCZlOWSEtRQqarTAtJGYE9HVjQYwVPC2YYbrpuaGCcJbw2lDBehactbWTHYd0D10vpw775sZtAZcCnqq5sHOdFgor636fOPsRI39PyUJlULUecDRakDwzz3EpJ58H1zOrCrKBB3mSCSr46UywccYoFv_QLB6K169Fa_ei8_48GOmNf3fdAZyCV6g8V00FpyBNcMYM0n4kLF8wmRkk07Wu5HvXcpPT77_NGuy0nYKiy8yq7vHi9_L9K93F7Ab</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Wei, Jianlu</creator><creator>Zhang, Lei</creator><creator>Ding, Yuanjing</creator><creator>Liu, Ronghan</creator><creator>Guo, Yuqi</creator><creator>Hettinghouse, Aubryanna</creator><creator>Buza, John</creator><creator>De La Croix, Jean</creator><creator>Li, Xin</creator><creator>Einhorn, Thomas A.</creator><creator>Liu, Chuan‐ju</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7181-8032</orcidid><orcidid>https://orcid.org/0000-0002-5075-4885</orcidid><orcidid>https://orcid.org/0000-0003-1846-4375</orcidid><orcidid>https://orcid.org/0000-0002-7414-5734</orcidid><orcidid>https://orcid.org/0000-0002-6897-0279</orcidid></search><sort><creationdate>202001</creationdate><title>Progranulin promotes diabetic fracture healing in mice with type 1 diabetes</title><author>Wei, Jianlu ; Zhang, Lei ; Ding, Yuanjing ; Liu, Ronghan ; Guo, Yuqi ; Hettinghouse, Aubryanna ; Buza, John ; De La Croix, Jean ; Li, Xin ; Einhorn, Thomas A. ; Liu, Chuan‐ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4488-5414d3e23ca703b80617f9baeec376db4c6ab96c4716dc63b37ea9864d948ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Autoimmune diseases</topic><topic>Binding</topic><topic>Bone healing</topic><topic>Chondrogenesis</topic><topic>Chondrogenesis - drug effects</topic><topic>Cytokines</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes Mellitus, Experimental - pathology</topic><topic>Diabetes Mellitus, Type 1 - pathology</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Fracture Healing - drug effects</topic><topic>Fractures</topic><topic>Gene Deletion</topic><topic>Genetic screening</topic><topic>Growth factors</topic><topic>Healing</topic><topic>Health risks</topic><topic>Humans</topic><topic>impaired fracture healing</topic><topic>In vivo methods and tests</topic><topic>Inflammation</topic><topic>Inflammation - pathology</topic><topic>Insulin</topic><topic>Mice</topic><topic>Multidisciplinary Sciences</topic><topic>progranulin</topic><topic>Progranulins - deficiency</topic><topic>Progranulins - pharmacology</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Receptors</topic><topic>Receptors, Tumor Necrosis Factor - metabolism</topic><topic>Recombinant Proteins - pharmacology</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Signal Transduction - drug effects</topic><topic>TNFR1</topic><topic>TNFR2</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Tumor necrosis factor</topic><topic>Tumor necrosis factor receptors</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>type 1 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Jianlu</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Ding, Yuanjing</creatorcontrib><creatorcontrib>Liu, Ronghan</creatorcontrib><creatorcontrib>Guo, Yuqi</creatorcontrib><creatorcontrib>Hettinghouse, Aubryanna</creatorcontrib><creatorcontrib>Buza, John</creatorcontrib><creatorcontrib>De La Croix, Jean</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Einhorn, Thomas A.</creatorcontrib><creatorcontrib>Liu, Chuan‐ju</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Jianlu</au><au>Zhang, Lei</au><au>Ding, Yuanjing</au><au>Liu, Ronghan</au><au>Guo, Yuqi</au><au>Hettinghouse, Aubryanna</au><au>Buza, John</au><au>De La Croix, Jean</au><au>Li, Xin</au><au>Einhorn, Thomas A.</au><au>Liu, Chuan‐ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progranulin promotes diabetic fracture healing in mice with type 1 diabetes</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><stitle>ANN NY ACAD SCI</stitle><addtitle>Ann N Y Acad Sci</addtitle><date>2020-01</date><risdate>2020</risdate><volume>1460</volume><issue>1</issue><spage>43</spage><epage>56</epage><pages>43-56</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by insulin deficiency, and patients with diabetes have an increased risk of bone fracture and significantly impaired fracture healing. Proinflammatory cytokine tumor necrosis factor‐alpha is significantly upregulated in diabetic fractures and is believed to underlie delayed fracture healing commonly observed in diabetes. Our previous genetic screen for the binding partners of progranulin (PGRN), a growth factor‐like molecule that induces chondrogenesis, led to the identification of tumor necrosis factor receptors (TNFRs) as the PGRN‐binding receptors. In this study, we employed several in vivo models to ascertain whether PGRN has therapeutic effects in diabetic fracture healing. Here, we report that deletion of PGRN significantly delayed bone fracture healing and aggravated inflammation in the fracture models of mice with T1DM. In contrast, recombinant PGRN effectively promoted diabetic fracture healing by inhibiting inflammation and enhancing chondrogenesis. In addition, both TNFR1 proinflammatory and TNFR2 anti‐inflammatory signaling pathways are involved in PGRN‐stimulated diabetic fracture healing. Collectively, these findings illuminate a novel understanding concerning the role of PGRN in diabetic fracture healing and may have an application in the development of novel therapeutic intervention strategies for diabetic and other types of impaired fracture healing. In this study, we employed wild‐type C57BL/6 and C57BL/6 background mice genetically modified for the absence of progranulin (PGRN) or tumor necrosis factor receptors and determined the role of endogenous and recombinant PGRN in diabetic fracture healing as well as the mechanism involved.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>31423598</pmid><doi>10.1111/nyas.14208</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7181-8032</orcidid><orcidid>https://orcid.org/0000-0002-5075-4885</orcidid><orcidid>https://orcid.org/0000-0003-1846-4375</orcidid><orcidid>https://orcid.org/0000-0002-7414-5734</orcidid><orcidid>https://orcid.org/0000-0002-6897-0279</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2020-01, Vol.1460 (1), p.43-56
issn 0077-8923
1749-6632
language eng
recordid cdi_webofscience_primary_000481654400001CitationCount
source MEDLINE; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Animal models
Animals
Autoimmune diseases
Binding
Bone healing
Chondrogenesis
Chondrogenesis - drug effects
Cytokines
Diabetes
Diabetes mellitus
Diabetes mellitus (insulin dependent)
Diabetes Mellitus, Experimental - pathology
Diabetes Mellitus, Type 1 - pathology
Extracellular Signal-Regulated MAP Kinases - metabolism
Fracture Healing - drug effects
Fractures
Gene Deletion
Genetic screening
Growth factors
Healing
Health risks
Humans
impaired fracture healing
In vivo methods and tests
Inflammation
Inflammation - pathology
Insulin
Mice
Multidisciplinary Sciences
progranulin
Progranulins - deficiency
Progranulins - pharmacology
Proto-Oncogene Proteins c-akt - metabolism
Receptors
Receptors, Tumor Necrosis Factor - metabolism
Recombinant Proteins - pharmacology
Science & Technology
Science & Technology - Other Topics
Signal Transduction - drug effects
TNFR1
TNFR2
TOR Serine-Threonine Kinases - metabolism
Tumor necrosis factor
Tumor necrosis factor receptors
Tumor Necrosis Factor-alpha - metabolism
Tumor necrosis factor-TNF
type 1 diabetes
title Progranulin promotes diabetic fracture healing in mice with type 1 diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progranulin%20promotes%20diabetic%20fracture%20healing%20in%20mice%20with%20type%201%20diabetes&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Wei,%20Jianlu&rft.date=2020-01&rft.volume=1460&rft.issue=1&rft.spage=43&rft.epage=56&rft.pages=43-56&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/nyas.14208&rft_dat=%3Cproquest_webof%3E2347350611%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347350611&rft_id=info:pmid/31423598&rfr_iscdi=true