Scheduling Heuristics for Live Video Transcoding on Cloud Edges

Efficient video delivery involves the transcoding of the original sequence into various resolutions, bitrates and standards, in order to match viewers’capabilities. Since video coding and transcoding are computationally demanding, performing a portion of these tasks at the network edges promises to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中兴通讯技术(英文版) 2017, Vol.15 (2), p.35-41
Hauptverfasser: Panagiotis Oikonomou, Maria G. Koziri, Nikos Tziritas, Thanasis Loukopoulos, XU Cheng-Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 2
container_start_page 35
container_title 中兴通讯技术(英文版)
container_volume 15
creator Panagiotis Oikonomou
Maria G. Koziri
Nikos Tziritas
Thanasis Loukopoulos
XU Cheng-Zhong
description Efficient video delivery involves the transcoding of the original sequence into various resolutions, bitrates and standards, in order to match viewers’capabilities. Since video coding and transcoding are computationally demanding, performing a portion of these tasks at the network edges promises to decrease both the workload and network traffic towards the data centers of media providers. Motivated by the increasing popularity of live casting on social media platforms, in this paper we focus on the case of live video transcoding. Specifically, we investigate scheduling heuristics that decide on which jobs should be assigned to an edge minidatacenter and which to a backend datacenter. Through simulation experiments with different QoS requirements we conclude on the best alternative.
doi_str_mv 10.3969/j.issn.1673-5188.2017.02.005
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_zxtxjs_e201702006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>7000281990</cqvip_id><wanfj_id>zxtxjs_e201702006</wanfj_id><sourcerecordid>zxtxjs_e201702006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-192a3be3f8935ad8faba505ad951200f456410b198dfa407e6bb9d305f5ca20f3</originalsourceid><addsrcrecordid>eNo9j09LwzAYxnNQcMx9h4BePLS-SZo0OYmM6YSBB4fXkjZJl1ITbVadfno7Jp7eh5cfzx-ErgnkTAl12-U-pZATUbKMEylzCqTMgeYA_AzN_v8XaJGSrwFACckLMUN3L83OmrH3ocVrOw4-7X2TsIsD3vhPi1-9sRFvBx1SE82RigEv-zgavDKtTZfo3Ok-2cXfnaPtw2q7XGeb58en5f0mawQVGVFUs9oyJxXj2kina81hUooTCuAKLgoCNVHSOF1AaUVdK8OAO95oCo7N0c3J9ksHp0NbdXEcwhRY_Rz2hy5V9rgYJi8xsVcnttnF0H5Mnav3wb_p4bsqp-VUEqWA_QLZa1p0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scheduling Heuristics for Live Video Transcoding on Cloud Edges</title><source>Alma/SFX Local Collection</source><creator>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</creator><creatorcontrib>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</creatorcontrib><description>Efficient video delivery involves the transcoding of the original sequence into various resolutions, bitrates and standards, in order to match viewers’capabilities. Since video coding and transcoding are computationally demanding, performing a portion of these tasks at the network edges promises to decrease both the workload and network traffic towards the data centers of media providers. Motivated by the increasing popularity of live casting on social media platforms, in this paper we focus on the case of live video transcoding. Specifically, we investigate scheduling heuristics that decide on which jobs should be assigned to an edge minidatacenter and which to a backend datacenter. Through simulation experiments with different QoS requirements we conclude on the best alternative.</description><identifier>ISSN: 1673-5188</identifier><identifier>DOI: 10.3969/j.issn.1673-5188.2017.02.005</identifier><language>eng</language><publisher>University of Thessaly, Lamia 35100, Greece%Research Center for Cloud Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China</publisher><subject>computing ; edge ; heuristics ; scheduling ; transcoding ; video ; x264</subject><ispartof>中兴通讯技术(英文版), 2017, Vol.15 (2), p.35-41</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/70429X/70429X.jpg</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</creatorcontrib><title>Scheduling Heuristics for Live Video Transcoding on Cloud Edges</title><title>中兴通讯技术(英文版)</title><addtitle>ZTE Communications</addtitle><description>Efficient video delivery involves the transcoding of the original sequence into various resolutions, bitrates and standards, in order to match viewers’capabilities. Since video coding and transcoding are computationally demanding, performing a portion of these tasks at the network edges promises to decrease both the workload and network traffic towards the data centers of media providers. Motivated by the increasing popularity of live casting on social media platforms, in this paper we focus on the case of live video transcoding. Specifically, we investigate scheduling heuristics that decide on which jobs should be assigned to an edge minidatacenter and which to a backend datacenter. Through simulation experiments with different QoS requirements we conclude on the best alternative.</description><subject>computing</subject><subject>edge</subject><subject>heuristics</subject><subject>scheduling</subject><subject>transcoding</subject><subject>video</subject><subject>x264</subject><issn>1673-5188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9j09LwzAYxnNQcMx9h4BePLS-SZo0OYmM6YSBB4fXkjZJl1ITbVadfno7Jp7eh5cfzx-ErgnkTAl12-U-pZATUbKMEylzCqTMgeYA_AzN_v8XaJGSrwFACckLMUN3L83OmrH3ocVrOw4-7X2TsIsD3vhPi1-9sRFvBx1SE82RigEv-zgavDKtTZfo3Ok-2cXfnaPtw2q7XGeb58en5f0mawQVGVFUs9oyJxXj2kina81hUooTCuAKLgoCNVHSOF1AaUVdK8OAO95oCo7N0c3J9ksHp0NbdXEcwhRY_Rz2hy5V9rgYJi8xsVcnttnF0H5Mnav3wb_p4bsqp-VUEqWA_QLZa1p0</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</creator><general>University of Thessaly, Lamia 35100, Greece%Research Center for Cloud Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2017</creationdate><title>Scheduling Heuristics for Live Video Transcoding on Cloud Edges</title><author>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-192a3be3f8935ad8faba505ad951200f456410b198dfa407e6bb9d305f5ca20f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>computing</topic><topic>edge</topic><topic>heuristics</topic><topic>scheduling</topic><topic>transcoding</topic><topic>video</topic><topic>x264</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>中兴通讯技术(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scheduling Heuristics for Live Video Transcoding on Cloud Edges</atitle><jtitle>中兴通讯技术(英文版)</jtitle><addtitle>ZTE Communications</addtitle><date>2017</date><risdate>2017</risdate><volume>15</volume><issue>2</issue><spage>35</spage><epage>41</epage><pages>35-41</pages><issn>1673-5188</issn><abstract>Efficient video delivery involves the transcoding of the original sequence into various resolutions, bitrates and standards, in order to match viewers’capabilities. Since video coding and transcoding are computationally demanding, performing a portion of these tasks at the network edges promises to decrease both the workload and network traffic towards the data centers of media providers. Motivated by the increasing popularity of live casting on social media platforms, in this paper we focus on the case of live video transcoding. Specifically, we investigate scheduling heuristics that decide on which jobs should be assigned to an edge minidatacenter and which to a backend datacenter. Through simulation experiments with different QoS requirements we conclude on the best alternative.</abstract><pub>University of Thessaly, Lamia 35100, Greece%Research Center for Cloud Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China</pub><doi>10.3969/j.issn.1673-5188.2017.02.005</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1673-5188
ispartof 中兴通讯技术(英文版), 2017, Vol.15 (2), p.35-41
issn 1673-5188
language eng
recordid cdi_wanfang_journals_zxtxjs_e201702006
source Alma/SFX Local Collection
subjects computing
edge
heuristics
scheduling
transcoding
video
x264
title Scheduling Heuristics for Live Video Transcoding on Cloud Edges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scheduling%20Heuristics%20for%20Live%20Video%20Transcoding%20on%20Cloud%20Edges&rft.jtitle=%E4%B8%AD%E5%85%B4%E9%80%9A%E8%AE%AF%E6%8A%80%E6%9C%AF%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Panagiotis%20Oikonomou;Maria%20G.%20Koziri;Nikos%20Tziritas;Thanasis%20Loukopoulos;XU%20Cheng-Zhong&rft.date=2017&rft.volume=15&rft.issue=2&rft.spage=35&rft.epage=41&rft.pages=35-41&rft.issn=1673-5188&rft_id=info:doi/10.3969/j.issn.1673-5188.2017.02.005&rft_dat=%3Cwanfang_jour_chong%3Ezxtxjs_e201702006%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=7000281990&rft_wanfj_id=zxtxjs_e201702006&rfr_iscdi=true