Scheduling Heuristics for Live Video Transcoding on Cloud Edges
Efficient video delivery involves the transcoding of the original sequence into various resolutions, bitrates and standards, in order to match viewers’capabilities. Since video coding and transcoding are computationally demanding, performing a portion of these tasks at the network edges promises to...
Gespeichert in:
Veröffentlicht in: | 中兴通讯技术(英文版) 2017, Vol.15 (2), p.35-41 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 2 |
container_start_page | 35 |
container_title | 中兴通讯技术(英文版) |
container_volume | 15 |
creator | Panagiotis Oikonomou Maria G. Koziri Nikos Tziritas Thanasis Loukopoulos XU Cheng-Zhong |
description | Efficient video delivery involves the transcoding of the original sequence into various resolutions, bitrates and standards, in order to match viewers’capabilities. Since video coding and transcoding are computationally demanding, performing a portion of these tasks at the network edges promises to decrease both the workload and network traffic towards the data centers of media providers. Motivated by the increasing popularity of live casting on social media platforms, in this paper we focus on the case of live video transcoding. Specifically, we investigate scheduling heuristics that decide on which jobs should be assigned to an edge minidatacenter and which to a backend datacenter. Through simulation experiments with different QoS requirements we conclude on the best alternative. |
doi_str_mv | 10.3969/j.issn.1673-5188.2017.02.005 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_zxtxjs_e201702006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>7000281990</cqvip_id><wanfj_id>zxtxjs_e201702006</wanfj_id><sourcerecordid>zxtxjs_e201702006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-192a3be3f8935ad8faba505ad951200f456410b198dfa407e6bb9d305f5ca20f3</originalsourceid><addsrcrecordid>eNo9j09LwzAYxnNQcMx9h4BePLS-SZo0OYmM6YSBB4fXkjZJl1ITbVadfno7Jp7eh5cfzx-ErgnkTAl12-U-pZATUbKMEylzCqTMgeYA_AzN_v8XaJGSrwFACckLMUN3L83OmrH3ocVrOw4-7X2TsIsD3vhPi1-9sRFvBx1SE82RigEv-zgavDKtTZfo3Ok-2cXfnaPtw2q7XGeb58en5f0mawQVGVFUs9oyJxXj2kina81hUooTCuAKLgoCNVHSOF1AaUVdK8OAO95oCo7N0c3J9ksHp0NbdXEcwhRY_Rz2hy5V9rgYJi8xsVcnttnF0H5Mnav3wb_p4bsqp-VUEqWA_QLZa1p0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scheduling Heuristics for Live Video Transcoding on Cloud Edges</title><source>Alma/SFX Local Collection</source><creator>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</creator><creatorcontrib>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</creatorcontrib><description>Efficient video delivery involves the transcoding of the original sequence into various resolutions, bitrates and standards, in order to match viewers’capabilities. Since video coding and transcoding are computationally demanding, performing a portion of these tasks at the network edges promises to decrease both the workload and network traffic towards the data centers of media providers. Motivated by the increasing popularity of live casting on social media platforms, in this paper we focus on the case of live video transcoding. Specifically, we investigate scheduling heuristics that decide on which jobs should be assigned to an edge minidatacenter and which to a backend datacenter. Through simulation experiments with different QoS requirements we conclude on the best alternative.</description><identifier>ISSN: 1673-5188</identifier><identifier>DOI: 10.3969/j.issn.1673-5188.2017.02.005</identifier><language>eng</language><publisher>University of Thessaly, Lamia 35100, Greece%Research Center for Cloud Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China</publisher><subject>computing ; edge ; heuristics ; scheduling ; transcoding ; video ; x264</subject><ispartof>中兴通讯技术(英文版), 2017, Vol.15 (2), p.35-41</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/70429X/70429X.jpg</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</creatorcontrib><title>Scheduling Heuristics for Live Video Transcoding on Cloud Edges</title><title>中兴通讯技术(英文版)</title><addtitle>ZTE Communications</addtitle><description>Efficient video delivery involves the transcoding of the original sequence into various resolutions, bitrates and standards, in order to match viewers’capabilities. Since video coding and transcoding are computationally demanding, performing a portion of these tasks at the network edges promises to decrease both the workload and network traffic towards the data centers of media providers. Motivated by the increasing popularity of live casting on social media platforms, in this paper we focus on the case of live video transcoding. Specifically, we investigate scheduling heuristics that decide on which jobs should be assigned to an edge minidatacenter and which to a backend datacenter. Through simulation experiments with different QoS requirements we conclude on the best alternative.</description><subject>computing</subject><subject>edge</subject><subject>heuristics</subject><subject>scheduling</subject><subject>transcoding</subject><subject>video</subject><subject>x264</subject><issn>1673-5188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9j09LwzAYxnNQcMx9h4BePLS-SZo0OYmM6YSBB4fXkjZJl1ITbVadfno7Jp7eh5cfzx-ErgnkTAl12-U-pZATUbKMEylzCqTMgeYA_AzN_v8XaJGSrwFACckLMUN3L83OmrH3ocVrOw4-7X2TsIsD3vhPi1-9sRFvBx1SE82RigEv-zgavDKtTZfo3Ok-2cXfnaPtw2q7XGeb58en5f0mawQVGVFUs9oyJxXj2kina81hUooTCuAKLgoCNVHSOF1AaUVdK8OAO95oCo7N0c3J9ksHp0NbdXEcwhRY_Rz2hy5V9rgYJi8xsVcnttnF0H5Mnav3wb_p4bsqp-VUEqWA_QLZa1p0</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</creator><general>University of Thessaly, Lamia 35100, Greece%Research Center for Cloud Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2017</creationdate><title>Scheduling Heuristics for Live Video Transcoding on Cloud Edges</title><author>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-192a3be3f8935ad8faba505ad951200f456410b198dfa407e6bb9d305f5ca20f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>computing</topic><topic>edge</topic><topic>heuristics</topic><topic>scheduling</topic><topic>transcoding</topic><topic>video</topic><topic>x264</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>中兴通讯技术(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panagiotis Oikonomou;Maria G. Koziri;Nikos Tziritas;Thanasis Loukopoulos;XU Cheng-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scheduling Heuristics for Live Video Transcoding on Cloud Edges</atitle><jtitle>中兴通讯技术(英文版)</jtitle><addtitle>ZTE Communications</addtitle><date>2017</date><risdate>2017</risdate><volume>15</volume><issue>2</issue><spage>35</spage><epage>41</epage><pages>35-41</pages><issn>1673-5188</issn><abstract>Efficient video delivery involves the transcoding of the original sequence into various resolutions, bitrates and standards, in order to match viewers’capabilities. Since video coding and transcoding are computationally demanding, performing a portion of these tasks at the network edges promises to decrease both the workload and network traffic towards the data centers of media providers. Motivated by the increasing popularity of live casting on social media platforms, in this paper we focus on the case of live video transcoding. Specifically, we investigate scheduling heuristics that decide on which jobs should be assigned to an edge minidatacenter and which to a backend datacenter. Through simulation experiments with different QoS requirements we conclude on the best alternative.</abstract><pub>University of Thessaly, Lamia 35100, Greece%Research Center for Cloud Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China</pub><doi>10.3969/j.issn.1673-5188.2017.02.005</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1673-5188 |
ispartof | 中兴通讯技术(英文版), 2017, Vol.15 (2), p.35-41 |
issn | 1673-5188 |
language | eng |
recordid | cdi_wanfang_journals_zxtxjs_e201702006 |
source | Alma/SFX Local Collection |
subjects | computing edge heuristics scheduling transcoding video x264 |
title | Scheduling Heuristics for Live Video Transcoding on Cloud Edges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scheduling%20Heuristics%20for%20Live%20Video%20Transcoding%20on%20Cloud%20Edges&rft.jtitle=%E4%B8%AD%E5%85%B4%E9%80%9A%E8%AE%AF%E6%8A%80%E6%9C%AF%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Panagiotis%20Oikonomou;Maria%20G.%20Koziri;Nikos%20Tziritas;Thanasis%20Loukopoulos;XU%20Cheng-Zhong&rft.date=2017&rft.volume=15&rft.issue=2&rft.spage=35&rft.epage=41&rft.pages=35-41&rft.issn=1673-5188&rft_id=info:doi/10.3969/j.issn.1673-5188.2017.02.005&rft_dat=%3Cwanfang_jour_chong%3Ezxtxjs_e201702006%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=7000281990&rft_wanfj_id=zxtxjs_e201702006&rfr_iscdi=true |