Spam Filtering: Online Naive Bayes Based on TONE
The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment...
Gespeichert in:
Veröffentlicht in: | ZTE Communications 2013-06, Vol.11 (2), p.51-54 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 2 |
container_start_page | 51 |
container_title | ZTE Communications |
container_volume | 11 |
creator | Sun, G Sun, H Ma, Y Shen, Y |
description | The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment to determine the performanee of the improved algorithm by plotting (I-ROCA)% curves. The resuhs show that the proposed method improves the performanee of original NB. |
doi_str_mv | 10.3969/j.issn.1673-5188.2013.02.008 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zxtxjs_e201302009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>46536955</cqvip_id><wanfj_id>zxtxjs_e201302009</wanfj_id><sourcerecordid>zxtxjs_e201302009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c939-c4a9eebc67f9b7602e05a73b29b4078d00938adc9477fbecdea1b191116857503</originalsourceid><addsrcrecordid>eNo9j81OAjEUhbvQRIK8w5i40MWM7bTTn6USQBMCC9k3becOlgwdmIKCj-Kz-E6-gkMwbu5N7vly7jkI3RKcUcXVwyrzMYaMcEHTgkiZ5ZjQDOcZxvIC9f7vV2gQo7cYY8VlwXgP5a8bs07Gvt5B68Py5_srmYfaB0hmxr9D8mSOELsZoUyakCzms9E1uqxMHWHwt_toMR4ths_pdD55GT5OU6eoSh0zCsA6LiplBcc54MIIanNlGRay7CJQaUqnmBCVBVeCIZYoQkiXTBSY9tH92fbDhMqEpV41-zZ0D_XnYXdYRQ2nkjg_GfXR3ZndtM12D3Gn1z46qGsToNlHTRiTQlDJiw69OaPurQnLbddZb1q_Nu1Rs07mqijoL8cyYyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448773865</pqid></control><display><type>article</type><title>Spam Filtering: Online Naive Bayes Based on TONE</title><source>Alma/SFX Local Collection</source><creator>Sun, G ; Sun, H ; Ma, Y ; Shen, Y</creator><creatorcontrib>Sun, G ; Sun, H ; Ma, Y ; Shen, Y</creatorcontrib><description>The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment to determine the performanee of the improved algorithm by plotting (I-ROCA)% curves. The resuhs show that the proposed method improves the performanee of original NB.</description><identifier>ISSN: 1673-5188</identifier><identifier>DOI: 10.3969/j.issn.1673-5188.2013.02.008</identifier><language>eng</language><publisher>Research Institute of Information Technology, Tsinghua University, Beijing 100084, China%ZTE Corporation, Shenzhen 518057, China%School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China</publisher><subject>Bayesian analysis ; Filtering ; On-line systems ; Online ; Performance enhancement ; Plotting ; Spamming ; Trains ; 在线 ; 垃圾邮件过滤 ; 改进算法 ; 曲线绘制 ; 朴素贝叶斯 ; 电子邮件</subject><ispartof>ZTE Communications, 2013-06, Vol.11 (2), p.51-54</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/70429X/70429X.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sun, G</creatorcontrib><creatorcontrib>Sun, H</creatorcontrib><creatorcontrib>Ma, Y</creatorcontrib><creatorcontrib>Shen, Y</creatorcontrib><title>Spam Filtering: Online Naive Bayes Based on TONE</title><title>ZTE Communications</title><addtitle>ZTE Communications</addtitle><description>The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment to determine the performanee of the improved algorithm by plotting (I-ROCA)% curves. The resuhs show that the proposed method improves the performanee of original NB.</description><subject>Bayesian analysis</subject><subject>Filtering</subject><subject>On-line systems</subject><subject>Online</subject><subject>Performance enhancement</subject><subject>Plotting</subject><subject>Spamming</subject><subject>Trains</subject><subject>在线</subject><subject>垃圾邮件过滤</subject><subject>改进算法</subject><subject>曲线绘制</subject><subject>朴素贝叶斯</subject><subject>电子邮件</subject><issn>1673-5188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9j81OAjEUhbvQRIK8w5i40MWM7bTTn6USQBMCC9k3becOlgwdmIKCj-Kz-E6-gkMwbu5N7vly7jkI3RKcUcXVwyrzMYaMcEHTgkiZ5ZjQDOcZxvIC9f7vV2gQo7cYY8VlwXgP5a8bs07Gvt5B68Py5_srmYfaB0hmxr9D8mSOELsZoUyakCzms9E1uqxMHWHwt_toMR4ths_pdD55GT5OU6eoSh0zCsA6LiplBcc54MIIanNlGRay7CJQaUqnmBCVBVeCIZYoQkiXTBSY9tH92fbDhMqEpV41-zZ0D_XnYXdYRQ2nkjg_GfXR3ZndtM12D3Gn1z46qGsToNlHTRiTQlDJiw69OaPurQnLbddZb1q_Nu1Rs07mqijoL8cyYyo</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Sun, G</creator><creator>Sun, H</creator><creator>Ma, Y</creator><creator>Shen, Y</creator><general>Research Institute of Information Technology, Tsinghua University, Beijing 100084, China%ZTE Corporation, Shenzhen 518057, China%School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20130601</creationdate><title>Spam Filtering: Online Naive Bayes Based on TONE</title><author>Sun, G ; Sun, H ; Ma, Y ; Shen, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c939-c4a9eebc67f9b7602e05a73b29b4078d00938adc9477fbecdea1b191116857503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bayesian analysis</topic><topic>Filtering</topic><topic>On-line systems</topic><topic>Online</topic><topic>Performance enhancement</topic><topic>Plotting</topic><topic>Spamming</topic><topic>Trains</topic><topic>在线</topic><topic>垃圾邮件过滤</topic><topic>改进算法</topic><topic>曲线绘制</topic><topic>朴素贝叶斯</topic><topic>电子邮件</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, G</creatorcontrib><creatorcontrib>Sun, H</creatorcontrib><creatorcontrib>Ma, Y</creatorcontrib><creatorcontrib>Shen, Y</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>ZTE Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, G</au><au>Sun, H</au><au>Ma, Y</au><au>Shen, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spam Filtering: Online Naive Bayes Based on TONE</atitle><jtitle>ZTE Communications</jtitle><addtitle>ZTE Communications</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>11</volume><issue>2</issue><spage>51</spage><epage>54</epage><pages>51-54</pages><issn>1673-5188</issn><abstract>The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment to determine the performanee of the improved algorithm by plotting (I-ROCA)% curves. The resuhs show that the proposed method improves the performanee of original NB.</abstract><pub>Research Institute of Information Technology, Tsinghua University, Beijing 100084, China%ZTE Corporation, Shenzhen 518057, China%School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China</pub><doi>10.3969/j.issn.1673-5188.2013.02.008</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1673-5188 |
ispartof | ZTE Communications, 2013-06, Vol.11 (2), p.51-54 |
issn | 1673-5188 |
language | eng |
recordid | cdi_wanfang_journals_zxtxjs_e201302009 |
source | Alma/SFX Local Collection |
subjects | Bayesian analysis Filtering On-line systems Online Performance enhancement Plotting Spamming Trains 在线 垃圾邮件过滤 改进算法 曲线绘制 朴素贝叶斯 电子邮件 |
title | Spam Filtering: Online Naive Bayes Based on TONE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spam%20Filtering%EF%BC%9A%20Online%20Naive%20Bayes%20Based%20on%20TONE&rft.jtitle=ZTE%20Communications&rft.au=Sun,%20G&rft.date=2013-06-01&rft.volume=11&rft.issue=2&rft.spage=51&rft.epage=54&rft.pages=51-54&rft.issn=1673-5188&rft_id=info:doi/10.3969/j.issn.1673-5188.2013.02.008&rft_dat=%3Cwanfang_jour_proqu%3Ezxtxjs_e201302009%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448773865&rft_id=info:pmid/&rft_cqvip_id=46536955&rft_wanfj_id=zxtxjs_e201302009&rfr_iscdi=true |