Spam Filtering: Online Naive Bayes Based on TONE

The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ZTE Communications 2013-06, Vol.11 (2), p.51-54
Hauptverfasser: Sun, G, Sun, H, Ma, Y, Shen, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 2
container_start_page 51
container_title ZTE Communications
container_volume 11
creator Sun, G
Sun, H
Ma, Y
Shen, Y
description The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment to determine the performanee of the improved algorithm by plotting (I-ROCA)% curves. The resuhs show that the proposed method improves the performanee of original NB.
doi_str_mv 10.3969/j.issn.1673-5188.2013.02.008
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zxtxjs_e201302009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>46536955</cqvip_id><wanfj_id>zxtxjs_e201302009</wanfj_id><sourcerecordid>zxtxjs_e201302009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c939-c4a9eebc67f9b7602e05a73b29b4078d00938adc9477fbecdea1b191116857503</originalsourceid><addsrcrecordid>eNo9j81OAjEUhbvQRIK8w5i40MWM7bTTn6USQBMCC9k3becOlgwdmIKCj-Kz-E6-gkMwbu5N7vly7jkI3RKcUcXVwyrzMYaMcEHTgkiZ5ZjQDOcZxvIC9f7vV2gQo7cYY8VlwXgP5a8bs07Gvt5B68Py5_srmYfaB0hmxr9D8mSOELsZoUyakCzms9E1uqxMHWHwt_toMR4ths_pdD55GT5OU6eoSh0zCsA6LiplBcc54MIIanNlGRay7CJQaUqnmBCVBVeCIZYoQkiXTBSY9tH92fbDhMqEpV41-zZ0D_XnYXdYRQ2nkjg_GfXR3ZndtM12D3Gn1z46qGsToNlHTRiTQlDJiw69OaPurQnLbddZb1q_Nu1Rs07mqijoL8cyYyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448773865</pqid></control><display><type>article</type><title>Spam Filtering: Online Naive Bayes Based on TONE</title><source>Alma/SFX Local Collection</source><creator>Sun, G ; Sun, H ; Ma, Y ; Shen, Y</creator><creatorcontrib>Sun, G ; Sun, H ; Ma, Y ; Shen, Y</creatorcontrib><description>The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment to determine the performanee of the improved algorithm by plotting (I-ROCA)% curves. The resuhs show that the proposed method improves the performanee of original NB.</description><identifier>ISSN: 1673-5188</identifier><identifier>DOI: 10.3969/j.issn.1673-5188.2013.02.008</identifier><language>eng</language><publisher>Research Institute of Information Technology, Tsinghua University, Beijing 100084, China%ZTE Corporation, Shenzhen 518057, China%School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China</publisher><subject>Bayesian analysis ; Filtering ; On-line systems ; Online ; Performance enhancement ; Plotting ; Spamming ; Trains ; 在线 ; 垃圾邮件过滤 ; 改进算法 ; 曲线绘制 ; 朴素贝叶斯 ; 电子邮件</subject><ispartof>ZTE Communications, 2013-06, Vol.11 (2), p.51-54</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/70429X/70429X.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sun, G</creatorcontrib><creatorcontrib>Sun, H</creatorcontrib><creatorcontrib>Ma, Y</creatorcontrib><creatorcontrib>Shen, Y</creatorcontrib><title>Spam Filtering: Online Naive Bayes Based on TONE</title><title>ZTE Communications</title><addtitle>ZTE Communications</addtitle><description>The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment to determine the performanee of the improved algorithm by plotting (I-ROCA)% curves. The resuhs show that the proposed method improves the performanee of original NB.</description><subject>Bayesian analysis</subject><subject>Filtering</subject><subject>On-line systems</subject><subject>Online</subject><subject>Performance enhancement</subject><subject>Plotting</subject><subject>Spamming</subject><subject>Trains</subject><subject>在线</subject><subject>垃圾邮件过滤</subject><subject>改进算法</subject><subject>曲线绘制</subject><subject>朴素贝叶斯</subject><subject>电子邮件</subject><issn>1673-5188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9j81OAjEUhbvQRIK8w5i40MWM7bTTn6USQBMCC9k3becOlgwdmIKCj-Kz-E6-gkMwbu5N7vly7jkI3RKcUcXVwyrzMYaMcEHTgkiZ5ZjQDOcZxvIC9f7vV2gQo7cYY8VlwXgP5a8bs07Gvt5B68Py5_srmYfaB0hmxr9D8mSOELsZoUyakCzms9E1uqxMHWHwt_toMR4ths_pdD55GT5OU6eoSh0zCsA6LiplBcc54MIIanNlGRay7CJQaUqnmBCVBVeCIZYoQkiXTBSY9tH92fbDhMqEpV41-zZ0D_XnYXdYRQ2nkjg_GfXR3ZndtM12D3Gn1z46qGsToNlHTRiTQlDJiw69OaPurQnLbddZb1q_Nu1Rs07mqijoL8cyYyo</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Sun, G</creator><creator>Sun, H</creator><creator>Ma, Y</creator><creator>Shen, Y</creator><general>Research Institute of Information Technology, Tsinghua University, Beijing 100084, China%ZTE Corporation, Shenzhen 518057, China%School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20130601</creationdate><title>Spam Filtering: Online Naive Bayes Based on TONE</title><author>Sun, G ; Sun, H ; Ma, Y ; Shen, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c939-c4a9eebc67f9b7602e05a73b29b4078d00938adc9477fbecdea1b191116857503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bayesian analysis</topic><topic>Filtering</topic><topic>On-line systems</topic><topic>Online</topic><topic>Performance enhancement</topic><topic>Plotting</topic><topic>Spamming</topic><topic>Trains</topic><topic>在线</topic><topic>垃圾邮件过滤</topic><topic>改进算法</topic><topic>曲线绘制</topic><topic>朴素贝叶斯</topic><topic>电子邮件</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, G</creatorcontrib><creatorcontrib>Sun, H</creatorcontrib><creatorcontrib>Ma, Y</creatorcontrib><creatorcontrib>Shen, Y</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>ZTE Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, G</au><au>Sun, H</au><au>Ma, Y</au><au>Shen, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spam Filtering: Online Naive Bayes Based on TONE</atitle><jtitle>ZTE Communications</jtitle><addtitle>ZTE Communications</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>11</volume><issue>2</issue><spage>51</spage><epage>54</epage><pages>51-54</pages><issn>1673-5188</issn><abstract>The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment to determine the performanee of the improved algorithm by plotting (I-ROCA)% curves. The resuhs show that the proposed method improves the performanee of original NB.</abstract><pub>Research Institute of Information Technology, Tsinghua University, Beijing 100084, China%ZTE Corporation, Shenzhen 518057, China%School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China</pub><doi>10.3969/j.issn.1673-5188.2013.02.008</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1673-5188
ispartof ZTE Communications, 2013-06, Vol.11 (2), p.51-54
issn 1673-5188
language eng
recordid cdi_wanfang_journals_zxtxjs_e201302009
source Alma/SFX Local Collection
subjects Bayesian analysis
Filtering
On-line systems
Online
Performance enhancement
Plotting
Spamming
Trains
在线
垃圾邮件过滤
改进算法
曲线绘制
朴素贝叶斯
电子邮件
title Spam Filtering: Online Naive Bayes Based on TONE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spam%20Filtering%EF%BC%9A%20Online%20Naive%20Bayes%20Based%20on%20TONE&rft.jtitle=ZTE%20Communications&rft.au=Sun,%20G&rft.date=2013-06-01&rft.volume=11&rft.issue=2&rft.spage=51&rft.epage=54&rft.pages=51-54&rft.issn=1673-5188&rft_id=info:doi/10.3969/j.issn.1673-5188.2013.02.008&rft_dat=%3Cwanfang_jour_proqu%3Ezxtxjs_e201302009%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448773865&rft_id=info:pmid/&rft_cqvip_id=46536955&rft_wanfj_id=zxtxjs_e201302009&rfr_iscdi=true