对一类齐二次型最值问题的深究

第二届陈省身杯数学奥林匹克第6题,是一道三元整式代数不等式试题,其系数看似复杂,其实构思独特,给人以多方面的启迪.本文给出该试题的几种简证,并对该试题进行合理的推广探究和背景挖掘.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中学数学教学 2017 (1), p.57-59
1. Verfasser: 沈盈盈
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 57
container_title 中学数学教学
container_volume
creator 沈盈盈
description 第二届陈省身杯数学奥林匹克第6题,是一道三元整式代数不等式试题,其系数看似复杂,其实构思独特,给人以多方面的启迪.本文给出该试题的几种简证,并对该试题进行合理的推广探究和背景挖掘.
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_zxsxjx201701020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>671384958</cqvip_id><wanfj_id>zxsxjx201701020</wanfj_id><sourcerecordid>zxsxjx201701020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590-718425b726d7b9d9d3363cb1f6f3bbc667a8c43279534f1bc3e037de741923363</originalsourceid><addsrcrecordid>eNpjYeA0NDAw0jUxNDLmYOAtLs5MMjAyNjY3NbE042TQerp-55MdDc837n65d8KTXT3P1ix8Oq_72ZyGpw17Xk5f93LRjOezWp5t3_h85TYeBta0xJziVF4ozc0Q4uYa4uyh6-Pv7uns6KObbGppoGtuaGFiZJpkbmSWYp5kmWKZYmxsZpycZJhmlmaclJRsZmaeaJFsYmxkbmlqbJJmmJRsnGpgbJ6Sam5iaGkEUsvNoA4xtjwxLy0xLz0-K7-0KA9oYXxVRXFFVoWRgaG5gaGBkQFQpRJEZXJGfl56YSZQbUFRZm5iUWW8mbmhsYWJpamFMQDmC1ds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>对一类齐二次型最值问题的深究</title><source>国家哲学社会科学学术期刊数据库 (National Social Sciences Database)</source><creator>沈盈盈</creator><creatorcontrib>沈盈盈</creatorcontrib><description>第二届陈省身杯数学奥林匹克第6题,是一道三元整式代数不等式试题,其系数看似复杂,其实构思独特,给人以多方面的启迪.本文给出该试题的几种简证,并对该试题进行合理的推广探究和背景挖掘.</description><identifier>ISSN: 1002-4123</identifier><language>chi</language><publisher>浙江省宁波市第四中学 315016</publisher><subject>不等式 ; 最大值 ; 齐二次型</subject><ispartof>中学数学教学, 2017 (1), p.57-59</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/80697X/80697X.jpg</thumbnail><link.rule.ids>315,781,785,4025</link.rule.ids></links><search><creatorcontrib>沈盈盈</creatorcontrib><title>对一类齐二次型最值问题的深究</title><title>中学数学教学</title><addtitle>High School Mathematics Teaching</addtitle><description>第二届陈省身杯数学奥林匹克第6题,是一道三元整式代数不等式试题,其系数看似复杂,其实构思独特,给人以多方面的启迪.本文给出该试题的几种简证,并对该试题进行合理的推广探究和背景挖掘.</description><subject>不等式</subject><subject>最大值</subject><subject>齐二次型</subject><issn>1002-4123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0NDAw0jUxNDLmYOAtLs5MMjAyNjY3NbE042TQerp-55MdDc837n65d8KTXT3P1ix8Oq_72ZyGpw17Xk5f93LRjOezWp5t3_h85TYeBta0xJziVF4ozc0Q4uYa4uyh6-Pv7uns6KObbGppoGtuaGFiZJpkbmSWYp5kmWKZYmxsZpycZJhmlmaclJRsZmaeaJFsYmxkbmlqbJJmmJRsnGpgbJ6Sam5iaGkEUsvNoA4xtjwxLy0xLz0-K7-0KA9oYXxVRXFFVoWRgaG5gaGBkQFQpRJEZXJGfl56YSZQbUFRZm5iUWW8mbmhsYWJpamFMQDmC1ds</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>沈盈盈</creator><general>浙江省宁波市第四中学 315016</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2017</creationdate><title>对一类齐二次型最值问题的深究</title><author>沈盈盈</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590-718425b726d7b9d9d3363cb1f6f3bbc667a8c43279534f1bc3e037de741923363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2017</creationdate><topic>不等式</topic><topic>最大值</topic><topic>齐二次型</topic><toplevel>online_resources</toplevel><creatorcontrib>沈盈盈</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>中学数学教学</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>沈盈盈</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>对一类齐二次型最值问题的深究</atitle><jtitle>中学数学教学</jtitle><addtitle>High School Mathematics Teaching</addtitle><date>2017</date><risdate>2017</risdate><issue>1</issue><spage>57</spage><epage>59</epage><pages>57-59</pages><issn>1002-4123</issn><abstract>第二届陈省身杯数学奥林匹克第6题,是一道三元整式代数不等式试题,其系数看似复杂,其实构思独特,给人以多方面的启迪.本文给出该试题的几种简证,并对该试题进行合理的推广探究和背景挖掘.</abstract><pub>浙江省宁波市第四中学 315016</pub><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1002-4123
ispartof 中学数学教学, 2017 (1), p.57-59
issn 1002-4123
language chi
recordid cdi_wanfang_journals_zxsxjx201701020
source 国家哲学社会科学学术期刊数据库 (National Social Sciences Database)
subjects 不等式
最大值
齐二次型
title 对一类齐二次型最值问题的深究
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E5%AF%B9%E4%B8%80%E7%B1%BB%E9%BD%90%E4%BA%8C%E6%AC%A1%E5%9E%8B%E6%9C%80%E5%80%BC%E9%97%AE%E9%A2%98%E7%9A%84%E6%B7%B1%E7%A9%B6&rft.jtitle=%E4%B8%AD%E5%AD%A6%E6%95%B0%E5%AD%A6%E6%95%99%E5%AD%A6&rft.au=%E6%B2%88%E7%9B%88%E7%9B%88&rft.date=2017&rft.issue=1&rft.spage=57&rft.epage=59&rft.pages=57-59&rft.issn=1002-4123&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_chong%3Ezxsxjx201701020%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=671384958&rft_wanfj_id=zxsxjx201701020&rfr_iscdi=true