TRAF proteins as key regulators of plant development and stress responses
Tumor necrosis factor receptor‐associated factor (TRAF) proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles. They are characterized by their C‐terminal region (TRAF‐C domain) containing seven to eight anti‐parallel β‐sheets, also...
Gespeichert in:
Veröffentlicht in: | Journal of integrative plant biology 2022-02, Vol.64 (2), p.431-448 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tumor necrosis factor receptor‐associated factor (TRAF) proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles. They are characterized by their C‐terminal region (TRAF‐C domain) containing seven to eight anti‐parallel β‐sheets, also known as the meprin and TRAF‐C homology (MATH) domain. Over the past few decades, significant progress has been made toward understanding the diverse roles of TRAF proteins in mammals and plants. Compared to other eukaryotic species, the Arabidopsis thaliana and rice (Oryza sativa) genomes encode many more TRAF/MATH domain‐containing proteins; these plant proteins cluster into five classes: TRAF/MATH‐only, MATH‐BPM, MATH‐UBP (ubiquitin protease), Seven in absentia (SINA), and MATH‐Filament and MATH‐PEARLI‐4 proteins, suggesting parallel evolution of TRAF proteins in plants. Increasing evidence now indicates that plant TRAF proteins form central signaling networks essential for multiple biological processes, such as vegetative and reproductive development, autophagosome formation, plant immunity, symbiosis, phytohormone signaling, and abiotic stress responses. Here, we summarize recent advances and highlight future prospects for understanding on the molecular mechanisms by which TRAF proteins act in plant development and stress responses.
TRAF proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles. This review summarizes recent advances and highlights future prospects for understanding the molecular mechanisms by which TRAF proteins act in plant development and stress responses. |
---|---|
ISSN: | 1672-9072 1744-7909 |
DOI: | 10.1111/jipb.13182 |