Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath
The rhizosheath, a layer of soil grains that adheres firmly to roots, is beneficial for plant growth and adaptation to drought environments. Switchgrass is a perennial C4 grass which can form contact rhizosheath under drought conditions. In this study, we characterized the microbiomes of four differ...
Gespeichert in:
Veröffentlicht in: | Journal of integrative plant biology 2021-10, Vol.63 (10), p.1753-1774 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1774 |
---|---|
container_issue | 10 |
container_start_page | 1753 |
container_title | Journal of integrative plant biology |
container_volume | 63 |
creator | Liu, Tie‐Yuan Ye, Nenghui Wang, Xinyu Das, Debatosh Tan, Yuxiang You, Xiangkai Long, Mingxiu Hu, Tianming Dai, Lei Zhang, Jianhua Chen, Mo‐Xian |
description | The rhizosheath, a layer of soil grains that adheres firmly to roots, is beneficial for plant growth and adaptation to drought environments. Switchgrass is a perennial C4 grass which can form contact rhizosheath under drought conditions. In this study, we characterized the microbiomes of four different rhizocompartments of two switchgrass ecotypes (Alamo and Kanlow) grown under drought or well‐watered conditions via 16S ribosomal RNA amplicon sequencing. These four rhizocompartments, the bulk soil, rhizosheath soil, rhizoplane, and root endosphere, harbored both distinct and overlapping microbial communities. The root compartments (rhizoplane and root endosphere) displayed low‐complexity communities dominated by Proteobacteria and Firmicutes. Compared to bulk soil, Cyanobacteria and Bacteroidetes were selectively enriched, while Proteobacteria and Firmicutes were selectively depleted, in rhizosheath soil. Taxa from Proteobacteria or Firmicutes were specifically selected in Alamo or Kanlow rhizosheath soil. Following drought stress, Citrobacter and Acinetobacter were further enriched in rhizosheath soil, suggesting that rhizosheath microbiome assembly is driven by drought stress. Additionally, the ecotype‐specific recruitment of rhizosheath microbiome reveals their differences in drought stress responses. Collectively, these results shed light on rhizosheath microbiome recruitment in switchgrass and lay the foundation for the improvement of drought tolerance in switchgrass by regulating the rhizosheath microbiome.
The rhizosheath is beneficial for plant adaptation to drought. Four rhizocompartments of switchgrass harbored distinct and overlapping microbial communities. The rhizosheath displayed high‐complexity communities compared to the root compartments. Rhizosheath microbiome assembly is driven by drought stress and plant ecotype. |
doi_str_mv | 10.1111/jipb.13154 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zwxb202110006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zwxb202110006</wanfj_id><sourcerecordid>zwxb202110006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4234-6cdd5ebaed7a4312dfdab546313a055aebf213022a531b02f8a9cb8103c25c523</originalsourceid><addsrcrecordid>eNp90ctu1DAUBmALgWgpbHgAFAlVQkgp5_iSyxIKtEWVYAESO8t2TiYeTS61kw7Tp8dlhi5Y4I29-Pxbxz9jLxHOMK13az_ZMxSo5CN2jKWUeVlD_Tidi5LnNZT8iD2LcQ0gKij4U3YkJK8qKcQx-_kxjMuqm7M4B4oxM0OTTRszzBm5cd5NlDXB31LWexdG68eeskAuLH7uKSE_ZHHrZ9etgkm3Q-fvxtiRmbvn7ElrNpFeHPYT9uPzp-_nl_n114ur8_fXuZNcyLxwTaPIGmpKIwXypm2MVbIQKAwoZci2HAVwbpRAC7ytTO1shSAcV05xccJO97lbM7RmWOn1uIQhvajvtr8sB44IAEVyb_ZuCuPNQnHWvY-ONmlWGpeouVKiwhILTPT1P_Qhk6sKoESs66Te7lX6mBgDtXoKvjdhpxH0fS_6vhf9p5eEXx0iF9tT80D_FpEAHsbwG9r9J0p_ufr2YR_6GyOPmCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580071199</pqid></control><display><type>article</type><title>Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Tie‐Yuan ; Ye, Nenghui ; Wang, Xinyu ; Das, Debatosh ; Tan, Yuxiang ; You, Xiangkai ; Long, Mingxiu ; Hu, Tianming ; Dai, Lei ; Zhang, Jianhua ; Chen, Mo‐Xian</creator><creatorcontrib>Liu, Tie‐Yuan ; Ye, Nenghui ; Wang, Xinyu ; Das, Debatosh ; Tan, Yuxiang ; You, Xiangkai ; Long, Mingxiu ; Hu, Tianming ; Dai, Lei ; Zhang, Jianhua ; Chen, Mo‐Xian</creatorcontrib><description>The rhizosheath, a layer of soil grains that adheres firmly to roots, is beneficial for plant growth and adaptation to drought environments. Switchgrass is a perennial C4 grass which can form contact rhizosheath under drought conditions. In this study, we characterized the microbiomes of four different rhizocompartments of two switchgrass ecotypes (Alamo and Kanlow) grown under drought or well‐watered conditions via 16S ribosomal RNA amplicon sequencing. These four rhizocompartments, the bulk soil, rhizosheath soil, rhizoplane, and root endosphere, harbored both distinct and overlapping microbial communities. The root compartments (rhizoplane and root endosphere) displayed low‐complexity communities dominated by Proteobacteria and Firmicutes. Compared to bulk soil, Cyanobacteria and Bacteroidetes were selectively enriched, while Proteobacteria and Firmicutes were selectively depleted, in rhizosheath soil. Taxa from Proteobacteria or Firmicutes were specifically selected in Alamo or Kanlow rhizosheath soil. Following drought stress, Citrobacter and Acinetobacter were further enriched in rhizosheath soil, suggesting that rhizosheath microbiome assembly is driven by drought stress. Additionally, the ecotype‐specific recruitment of rhizosheath microbiome reveals their differences in drought stress responses. Collectively, these results shed light on rhizosheath microbiome recruitment in switchgrass and lay the foundation for the improvement of drought tolerance in switchgrass by regulating the rhizosheath microbiome.
The rhizosheath is beneficial for plant adaptation to drought. Four rhizocompartments of switchgrass harbored distinct and overlapping microbial communities. The rhizosheath displayed high‐complexity communities compared to the root compartments. Rhizosheath microbiome assembly is driven by drought stress and plant ecotype.</description><identifier>ISSN: 1672-9072</identifier><identifier>EISSN: 1744-7909</identifier><identifier>DOI: 10.1111/jipb.13154</identifier><identifier>PMID: 34288433</identifier><language>eng</language><publisher>China (Republic : 1949- ): Wiley Subscription Services, Inc</publisher><subject>16S rRNA sequencing ; Biofuels ; Citrobacter ; Cyanobacteria ; Drought ; Drought resistance ; Droughts ; Ecotype ; Ecotypes ; Firmicutes ; Gene sequencing ; Microbial activity ; Microbiomes ; Microbiota ; Microorganisms ; Osmoregulation ; Panicum - microbiology ; Panicum - physiology ; Panicum virgatum ; Plant growth ; Plant Roots - microbiology ; Proteobacteria ; Recruitment ; Rhizoplane ; rhizosheath formation ; rhizosphere ; rRNA 16S ; Soil layers ; Soil Microbiology ; Soil microorganisms ; Soil stresses ; Soils ; switchgrass (Panicum virgatum L.) ; water deficiency</subject><ispartof>Journal of integrative plant biology, 2021-10, Vol.63 (10), p.1753-1774</ispartof><rights>2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.</rights><rights>2021 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4234-6cdd5ebaed7a4312dfdab546313a055aebf213022a531b02f8a9cb8103c25c523</citedby><cites>FETCH-LOGICAL-c4234-6cdd5ebaed7a4312dfdab546313a055aebf213022a531b02f8a9cb8103c25c523</cites><orcidid>0000-0002-5598-5308 ; 0000-0003-4538-5533 ; 0000-0003-3729-5669 ; 0000-0003-1530-7438 ; 0000-0002-4684-7237 ; 0000-0002-3126-3562 ; 0000-0002-7853-2790 ; 0000-0002-1704-1293 ; 0000-0002-3876-0705 ; 0000-0002-9254-5862 ; 0000-0002-3819-2437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zwxb/zwxb.jpg</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjipb.13154$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjipb.13154$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34288433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Tie‐Yuan</creatorcontrib><creatorcontrib>Ye, Nenghui</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Das, Debatosh</creatorcontrib><creatorcontrib>Tan, Yuxiang</creatorcontrib><creatorcontrib>You, Xiangkai</creatorcontrib><creatorcontrib>Long, Mingxiu</creatorcontrib><creatorcontrib>Hu, Tianming</creatorcontrib><creatorcontrib>Dai, Lei</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Chen, Mo‐Xian</creatorcontrib><title>Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath</title><title>Journal of integrative plant biology</title><addtitle>J Integr Plant Biol</addtitle><description>The rhizosheath, a layer of soil grains that adheres firmly to roots, is beneficial for plant growth and adaptation to drought environments. Switchgrass is a perennial C4 grass which can form contact rhizosheath under drought conditions. In this study, we characterized the microbiomes of four different rhizocompartments of two switchgrass ecotypes (Alamo and Kanlow) grown under drought or well‐watered conditions via 16S ribosomal RNA amplicon sequencing. These four rhizocompartments, the bulk soil, rhizosheath soil, rhizoplane, and root endosphere, harbored both distinct and overlapping microbial communities. The root compartments (rhizoplane and root endosphere) displayed low‐complexity communities dominated by Proteobacteria and Firmicutes. Compared to bulk soil, Cyanobacteria and Bacteroidetes were selectively enriched, while Proteobacteria and Firmicutes were selectively depleted, in rhizosheath soil. Taxa from Proteobacteria or Firmicutes were specifically selected in Alamo or Kanlow rhizosheath soil. Following drought stress, Citrobacter and Acinetobacter were further enriched in rhizosheath soil, suggesting that rhizosheath microbiome assembly is driven by drought stress. Additionally, the ecotype‐specific recruitment of rhizosheath microbiome reveals their differences in drought stress responses. Collectively, these results shed light on rhizosheath microbiome recruitment in switchgrass and lay the foundation for the improvement of drought tolerance in switchgrass by regulating the rhizosheath microbiome.
The rhizosheath is beneficial for plant adaptation to drought. Four rhizocompartments of switchgrass harbored distinct and overlapping microbial communities. The rhizosheath displayed high‐complexity communities compared to the root compartments. Rhizosheath microbiome assembly is driven by drought stress and plant ecotype.</description><subject>16S rRNA sequencing</subject><subject>Biofuels</subject><subject>Citrobacter</subject><subject>Cyanobacteria</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Droughts</subject><subject>Ecotype</subject><subject>Ecotypes</subject><subject>Firmicutes</subject><subject>Gene sequencing</subject><subject>Microbial activity</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Osmoregulation</subject><subject>Panicum - microbiology</subject><subject>Panicum - physiology</subject><subject>Panicum virgatum</subject><subject>Plant growth</subject><subject>Plant Roots - microbiology</subject><subject>Proteobacteria</subject><subject>Recruitment</subject><subject>Rhizoplane</subject><subject>rhizosheath formation</subject><subject>rhizosphere</subject><subject>rRNA 16S</subject><subject>Soil layers</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soil stresses</subject><subject>Soils</subject><subject>switchgrass (Panicum virgatum L.)</subject><subject>water deficiency</subject><issn>1672-9072</issn><issn>1744-7909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp90ctu1DAUBmALgWgpbHgAFAlVQkgp5_iSyxIKtEWVYAESO8t2TiYeTS61kw7Tp8dlhi5Y4I29-Pxbxz9jLxHOMK13az_ZMxSo5CN2jKWUeVlD_Tidi5LnNZT8iD2LcQ0gKij4U3YkJK8qKcQx-_kxjMuqm7M4B4oxM0OTTRszzBm5cd5NlDXB31LWexdG68eeskAuLH7uKSE_ZHHrZ9etgkm3Q-fvxtiRmbvn7ElrNpFeHPYT9uPzp-_nl_n114ur8_fXuZNcyLxwTaPIGmpKIwXypm2MVbIQKAwoZci2HAVwbpRAC7ytTO1shSAcV05xccJO97lbM7RmWOn1uIQhvajvtr8sB44IAEVyb_ZuCuPNQnHWvY-ONmlWGpeouVKiwhILTPT1P_Qhk6sKoESs66Te7lX6mBgDtXoKvjdhpxH0fS_6vhf9p5eEXx0iF9tT80D_FpEAHsbwG9r9J0p_ufr2YR_6GyOPmCU</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Liu, Tie‐Yuan</creator><creator>Ye, Nenghui</creator><creator>Wang, Xinyu</creator><creator>Das, Debatosh</creator><creator>Tan, Yuxiang</creator><creator>You, Xiangkai</creator><creator>Long, Mingxiu</creator><creator>Hu, Tianming</creator><creator>Dai, Lei</creator><creator>Zhang, Jianhua</creator><creator>Chen, Mo‐Xian</creator><general>Wiley Subscription Services, Inc</general><general>Department of Biology,Hong Kong Baptist University,Kowloon,Hong Kong 999077,China%CAS Key Laboratory of Quantitative Engineering Biology,Shenzhen Institute of Synthetic Biology,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China%Co-Innovation Center for Sustainable Forestry in Southern China,College of Biology and the Environment,Nanjing Forestry University,Nanjing 210037,China</general><general>CAS Key Laboratory of Quantitative Engineering Biology,Shenzhen Institute of Synthetic Biology,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China</general><general>State Key Laboratory of Agrobiotechnology,The Chinese University of Hong Kong,Shatin,Hong Kong 999077,China</general><general>College of Grassland Agriculture,Northwest A&F University,Yangling 712100,China</general><general>Department of Biology,Hong Kong Baptist University,Kowloon,Hong Kong 999077,China%Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China,College of Agriculture,Hunan Agricultural University,Changsha 410128,China%College of Grassland Agriculture,Northwest A&F University,Yangling 712100,China%State Key Laboratory of Agrobiotechnology,The Chinese University of Hong Kong,Shatin,Hong Kong 999077,China</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0002-5598-5308</orcidid><orcidid>https://orcid.org/0000-0003-4538-5533</orcidid><orcidid>https://orcid.org/0000-0003-3729-5669</orcidid><orcidid>https://orcid.org/0000-0003-1530-7438</orcidid><orcidid>https://orcid.org/0000-0002-4684-7237</orcidid><orcidid>https://orcid.org/0000-0002-3126-3562</orcidid><orcidid>https://orcid.org/0000-0002-7853-2790</orcidid><orcidid>https://orcid.org/0000-0002-1704-1293</orcidid><orcidid>https://orcid.org/0000-0002-3876-0705</orcidid><orcidid>https://orcid.org/0000-0002-9254-5862</orcidid><orcidid>https://orcid.org/0000-0002-3819-2437</orcidid></search><sort><creationdate>202110</creationdate><title>Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath</title><author>Liu, Tie‐Yuan ; Ye, Nenghui ; Wang, Xinyu ; Das, Debatosh ; Tan, Yuxiang ; You, Xiangkai ; Long, Mingxiu ; Hu, Tianming ; Dai, Lei ; Zhang, Jianhua ; Chen, Mo‐Xian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4234-6cdd5ebaed7a4312dfdab546313a055aebf213022a531b02f8a9cb8103c25c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>16S rRNA sequencing</topic><topic>Biofuels</topic><topic>Citrobacter</topic><topic>Cyanobacteria</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Droughts</topic><topic>Ecotype</topic><topic>Ecotypes</topic><topic>Firmicutes</topic><topic>Gene sequencing</topic><topic>Microbial activity</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Osmoregulation</topic><topic>Panicum - microbiology</topic><topic>Panicum - physiology</topic><topic>Panicum virgatum</topic><topic>Plant growth</topic><topic>Plant Roots - microbiology</topic><topic>Proteobacteria</topic><topic>Recruitment</topic><topic>Rhizoplane</topic><topic>rhizosheath formation</topic><topic>rhizosphere</topic><topic>rRNA 16S</topic><topic>Soil layers</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soil stresses</topic><topic>Soils</topic><topic>switchgrass (Panicum virgatum L.)</topic><topic>water deficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tie‐Yuan</creatorcontrib><creatorcontrib>Ye, Nenghui</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Das, Debatosh</creatorcontrib><creatorcontrib>Tan, Yuxiang</creatorcontrib><creatorcontrib>You, Xiangkai</creatorcontrib><creatorcontrib>Long, Mingxiu</creatorcontrib><creatorcontrib>Hu, Tianming</creatorcontrib><creatorcontrib>Dai, Lei</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Chen, Mo‐Xian</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of integrative plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tie‐Yuan</au><au>Ye, Nenghui</au><au>Wang, Xinyu</au><au>Das, Debatosh</au><au>Tan, Yuxiang</au><au>You, Xiangkai</au><au>Long, Mingxiu</au><au>Hu, Tianming</au><au>Dai, Lei</au><au>Zhang, Jianhua</au><au>Chen, Mo‐Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath</atitle><jtitle>Journal of integrative plant biology</jtitle><addtitle>J Integr Plant Biol</addtitle><date>2021-10</date><risdate>2021</risdate><volume>63</volume><issue>10</issue><spage>1753</spage><epage>1774</epage><pages>1753-1774</pages><issn>1672-9072</issn><eissn>1744-7909</eissn><abstract>The rhizosheath, a layer of soil grains that adheres firmly to roots, is beneficial for plant growth and adaptation to drought environments. Switchgrass is a perennial C4 grass which can form contact rhizosheath under drought conditions. In this study, we characterized the microbiomes of four different rhizocompartments of two switchgrass ecotypes (Alamo and Kanlow) grown under drought or well‐watered conditions via 16S ribosomal RNA amplicon sequencing. These four rhizocompartments, the bulk soil, rhizosheath soil, rhizoplane, and root endosphere, harbored both distinct and overlapping microbial communities. The root compartments (rhizoplane and root endosphere) displayed low‐complexity communities dominated by Proteobacteria and Firmicutes. Compared to bulk soil, Cyanobacteria and Bacteroidetes were selectively enriched, while Proteobacteria and Firmicutes were selectively depleted, in rhizosheath soil. Taxa from Proteobacteria or Firmicutes were specifically selected in Alamo or Kanlow rhizosheath soil. Following drought stress, Citrobacter and Acinetobacter were further enriched in rhizosheath soil, suggesting that rhizosheath microbiome assembly is driven by drought stress. Additionally, the ecotype‐specific recruitment of rhizosheath microbiome reveals their differences in drought stress responses. Collectively, these results shed light on rhizosheath microbiome recruitment in switchgrass and lay the foundation for the improvement of drought tolerance in switchgrass by regulating the rhizosheath microbiome.
The rhizosheath is beneficial for plant adaptation to drought. Four rhizocompartments of switchgrass harbored distinct and overlapping microbial communities. The rhizosheath displayed high‐complexity communities compared to the root compartments. Rhizosheath microbiome assembly is driven by drought stress and plant ecotype.</abstract><cop>China (Republic : 1949- )</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34288433</pmid><doi>10.1111/jipb.13154</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-5598-5308</orcidid><orcidid>https://orcid.org/0000-0003-4538-5533</orcidid><orcidid>https://orcid.org/0000-0003-3729-5669</orcidid><orcidid>https://orcid.org/0000-0003-1530-7438</orcidid><orcidid>https://orcid.org/0000-0002-4684-7237</orcidid><orcidid>https://orcid.org/0000-0002-3126-3562</orcidid><orcidid>https://orcid.org/0000-0002-7853-2790</orcidid><orcidid>https://orcid.org/0000-0002-1704-1293</orcidid><orcidid>https://orcid.org/0000-0002-3876-0705</orcidid><orcidid>https://orcid.org/0000-0002-9254-5862</orcidid><orcidid>https://orcid.org/0000-0002-3819-2437</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-9072 |
ispartof | Journal of integrative plant biology, 2021-10, Vol.63 (10), p.1753-1774 |
issn | 1672-9072 1744-7909 |
language | eng |
recordid | cdi_wanfang_journals_zwxb202110006 |
source | MEDLINE; Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | 16S rRNA sequencing Biofuels Citrobacter Cyanobacteria Drought Drought resistance Droughts Ecotype Ecotypes Firmicutes Gene sequencing Microbial activity Microbiomes Microbiota Microorganisms Osmoregulation Panicum - microbiology Panicum - physiology Panicum virgatum Plant growth Plant Roots - microbiology Proteobacteria Recruitment Rhizoplane rhizosheath formation rhizosphere rRNA 16S Soil layers Soil Microbiology Soil microorganisms Soil stresses Soils switchgrass (Panicum virgatum L.) water deficiency |
title | Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drought%20stress%20and%20plant%20ecotype%20drive%20microbiome%20recruitment%20in%20switchgrass%20rhizosheath&rft.jtitle=Journal%20of%20integrative%20plant%20biology&rft.au=Liu,%20Tie%E2%80%90Yuan&rft.date=2021-10&rft.volume=63&rft.issue=10&rft.spage=1753&rft.epage=1774&rft.pages=1753-1774&rft.issn=1672-9072&rft.eissn=1744-7909&rft_id=info:doi/10.1111/jipb.13154&rft_dat=%3Cwanfang_jour_proqu%3Ezwxb202110006%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580071199&rft_id=info:pmid/34288433&rft_wanfj_id=zwxb202110006&rfr_iscdi=true |