Short-term travel flow prediction method based on FCM-clustering and ELM

Short-term travel flow prediction has been the core of the intelligent transport systems (ITS). An advanced method based on fuzzy C-means (FCM) and extreme learning machine (ELM) has been discussed by analyzing prediction model. First, this model takes advantages of ability to adapt to nonlinear sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Central South University 2017-06, Vol.24 (6), p.1344-1350
Hauptverfasser: 王星超, 胡坚明, 梁伟, 张毅
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1350
container_issue 6
container_start_page 1344
container_title Journal of Central South University
container_volume 24
creator 王星超
胡坚明
梁伟
张毅
description Short-term travel flow prediction has been the core of the intelligent transport systems (ITS). An advanced method based on fuzzy C-means (FCM) and extreme learning machine (ELM) has been discussed by analyzing prediction model. First, this model takes advantages of ability to adapt to nonlinear systems and the fast speed of ELM algorithm. Second, with FCM-clustering function,this novel model can get the clusters and the membership in the same cluster, which means that the associated observation points have been chosen. Therefore, the spatial relations can be used by giving the weight to every observation points when the model trains and tests the ELM. Third, by analyzing the actual data in Haining City in 2016, the feasibility and advantages of FCM-ELM prediction model have been shown when compared with other prediction algorithms.
doi_str_mv 10.1007/s11771-017-3538-1
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zngydxxb_e201706013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>7000369048</cqvip_id><wanfj_id>zngydxxb_e201706013</wanfj_id><sourcerecordid>zngydxxb_e201706013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-bc33233b2f6ee8c33bd38a6fb6311c4000946d63f41d3bebe249060333fa0c483</originalsourceid><addsrcrecordid>eNp9kTFPwzAQhS0EElXpD2CLxIgMPl_qJCOqWorUigGYLTtx0qDUae2Utvx6XAUBE5N90vve3b0j5BrYHTCW3HuAJAHKIKE4xpTCGRlwzhM65hzPw59lY8rTLLskI-9rzRC4QJGJAZm_rFrX0c64ddQ59WGaqGzafbRxpqjzrm5ttDbdqi0irbwpolDPJkuaNzsfmNpWkbJFNF0sr8hFqRpvRt_vkLzNpq-TOV08Pz5NHhY0x5R1VOeIHFHzUhiThkIXmCpRaoEAecwYy2JRCCxjKFAbbXicMcEQsVQsj1Mcktved69sqWwl39uds6Gj_LTVsTgctDQ8JBEgwKC-6dUb1253xne_csggAZGyMM6QQK_KXeu9M6XcuHqt3FECk6eEZZ-wDL7ylLCEwPCe8ZtTDMb9cf4H-h4nX7W22gbup1MSVg8nYWHFLxgvh6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917168032</pqid></control><display><type>article</type><title>Short-term travel flow prediction method based on FCM-clustering and ELM</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>王星超;胡坚明;梁伟;张毅</creator><creatorcontrib>王星超;胡坚明;梁伟;张毅</creatorcontrib><description>Short-term travel flow prediction has been the core of the intelligent transport systems (ITS). An advanced method based on fuzzy C-means (FCM) and extreme learning machine (ELM) has been discussed by analyzing prediction model. First, this model takes advantages of ability to adapt to nonlinear systems and the fast speed of ELM algorithm. Second, with FCM-clustering function,this novel model can get the clusters and the membership in the same cluster, which means that the associated observation points have been chosen. Therefore, the spatial relations can be used by giving the weight to every observation points when the model trains and tests the ELM. Third, by analyzing the actual data in Haining City in 2016, the feasibility and advantages of FCM-ELM prediction model have been shown when compared with other prediction algorithms.</description><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-017-3538-1</identifier><language>eng</language><publisher>Changsha: Central South University</publisher><subject>Clustering ; Clusters ; Dynamical systems ; ELM ; Engineering ; extreme ; FCM-clustering;spatio-temporal ; Feasibility studies ; flow ; Fuzzy systems ; intelligent ; Intelligent transportation systems ; ITS ; learning ; machine ; Mathematical models ; Metallic Materials ; Neural networks ; Nonlinear dynamics ; prediction ; relation ; systems ; transportation ; travel</subject><ispartof>Journal of Central South University, 2017-06, Vol.24 (6), p.1344-1350</ispartof><rights>Central South University Press and Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-bc33233b2f6ee8c33bd38a6fb6311c4000946d63f41d3bebe249060333fa0c483</citedby><cites>FETCH-LOGICAL-c380t-bc33233b2f6ee8c33bd38a6fb6311c4000946d63f41d3bebe249060333fa0c483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85521A/85521A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11771-017-3538-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11771-017-3538-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>王星超;胡坚明;梁伟;张毅</creatorcontrib><title>Short-term travel flow prediction method based on FCM-clustering and ELM</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ</addtitle><addtitle>Journal of Central South University of Technology</addtitle><description>Short-term travel flow prediction has been the core of the intelligent transport systems (ITS). An advanced method based on fuzzy C-means (FCM) and extreme learning machine (ELM) has been discussed by analyzing prediction model. First, this model takes advantages of ability to adapt to nonlinear systems and the fast speed of ELM algorithm. Second, with FCM-clustering function,this novel model can get the clusters and the membership in the same cluster, which means that the associated observation points have been chosen. Therefore, the spatial relations can be used by giving the weight to every observation points when the model trains and tests the ELM. Third, by analyzing the actual data in Haining City in 2016, the feasibility and advantages of FCM-ELM prediction model have been shown when compared with other prediction algorithms.</description><subject>Clustering</subject><subject>Clusters</subject><subject>Dynamical systems</subject><subject>ELM</subject><subject>Engineering</subject><subject>extreme</subject><subject>FCM-clustering;spatio-temporal</subject><subject>Feasibility studies</subject><subject>flow</subject><subject>Fuzzy systems</subject><subject>intelligent</subject><subject>Intelligent transportation systems</subject><subject>ITS</subject><subject>learning</subject><subject>machine</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>prediction</subject><subject>relation</subject><subject>systems</subject><subject>transportation</subject><subject>travel</subject><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kTFPwzAQhS0EElXpD2CLxIgMPl_qJCOqWorUigGYLTtx0qDUae2Utvx6XAUBE5N90vve3b0j5BrYHTCW3HuAJAHKIKE4xpTCGRlwzhM65hzPw59lY8rTLLskI-9rzRC4QJGJAZm_rFrX0c64ddQ59WGaqGzafbRxpqjzrm5ttDbdqi0irbwpolDPJkuaNzsfmNpWkbJFNF0sr8hFqRpvRt_vkLzNpq-TOV08Pz5NHhY0x5R1VOeIHFHzUhiThkIXmCpRaoEAecwYy2JRCCxjKFAbbXicMcEQsVQsj1Mcktved69sqWwl39uds6Gj_LTVsTgctDQ8JBEgwKC-6dUb1253xne_csggAZGyMM6QQK_KXeu9M6XcuHqt3FECk6eEZZ-wDL7ylLCEwPCe8ZtTDMb9cf4H-h4nX7W22gbup1MSVg8nYWHFLxgvh6Y</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>王星超;胡坚明;梁伟;张毅</creator><general>Central South University</general><general>Springer Nature B.V</general><general>Department of Control Science and Engineering, Tongji University, Shanghai 201804, China%Department of Automation, Tsinghua University, Beijing 100084, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20170601</creationdate><title>Short-term travel flow prediction method based on FCM-clustering and ELM</title><author>王星超;胡坚明;梁伟;张毅</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-bc33233b2f6ee8c33bd38a6fb6311c4000946d63f41d3bebe249060333fa0c483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Clustering</topic><topic>Clusters</topic><topic>Dynamical systems</topic><topic>ELM</topic><topic>Engineering</topic><topic>extreme</topic><topic>FCM-clustering;spatio-temporal</topic><topic>Feasibility studies</topic><topic>flow</topic><topic>Fuzzy systems</topic><topic>intelligent</topic><topic>Intelligent transportation systems</topic><topic>ITS</topic><topic>learning</topic><topic>machine</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>prediction</topic><topic>relation</topic><topic>systems</topic><topic>transportation</topic><topic>travel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王星超;胡坚明;梁伟;张毅</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王星超;胡坚明;梁伟;张毅</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-term travel flow prediction method based on FCM-clustering and ELM</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ</stitle><addtitle>Journal of Central South University of Technology</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>24</volume><issue>6</issue><spage>1344</spage><epage>1350</epage><pages>1344-1350</pages><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>Short-term travel flow prediction has been the core of the intelligent transport systems (ITS). An advanced method based on fuzzy C-means (FCM) and extreme learning machine (ELM) has been discussed by analyzing prediction model. First, this model takes advantages of ability to adapt to nonlinear systems and the fast speed of ELM algorithm. Second, with FCM-clustering function,this novel model can get the clusters and the membership in the same cluster, which means that the associated observation points have been chosen. Therefore, the spatial relations can be used by giving the weight to every observation points when the model trains and tests the ELM. Third, by analyzing the actual data in Haining City in 2016, the feasibility and advantages of FCM-ELM prediction model have been shown when compared with other prediction algorithms.</abstract><cop>Changsha</cop><pub>Central South University</pub><doi>10.1007/s11771-017-3538-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-2899
ispartof Journal of Central South University, 2017-06, Vol.24 (6), p.1344-1350
issn 2095-2899
2227-5223
language eng
recordid cdi_wanfang_journals_zngydxxb_e201706013
source SpringerLink Journals; Alma/SFX Local Collection
subjects Clustering
Clusters
Dynamical systems
ELM
Engineering
extreme
FCM-clustering
spatio-temporal
Feasibility studies
flow
Fuzzy systems
intelligent
Intelligent transportation systems
ITS
learning
machine
Mathematical models
Metallic Materials
Neural networks
Nonlinear dynamics
prediction
relation
systems
transportation
travel
title Short-term travel flow prediction method based on FCM-clustering and ELM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-term%20travel%20flow%20prediction%20method%20based%20on%20FCM-clustering%20and%20ELM&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=%E7%8E%8B%E6%98%9F%E8%B6%85;%E8%83%A1%E5%9D%9A%E6%98%8E;%E6%A2%81%E4%BC%9F;%E5%BC%A0%E6%AF%85&rft.date=2017-06-01&rft.volume=24&rft.issue=6&rft.spage=1344&rft.epage=1350&rft.pages=1344-1350&rft.issn=2095-2899&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-017-3538-1&rft_dat=%3Cwanfang_jour_proqu%3Ezngydxxb_e201706013%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917168032&rft_id=info:pmid/&rft_cqvip_id=7000369048&rft_wanfj_id=zngydxxb_e201706013&rfr_iscdi=true