Improving vertex-frontier based GPU breadth-first search

Breadth-first search(BFS) is an important kernel for graph traversal and has been used by many graph processing applications. Extensive studies have been devoted in boosting the performance of BFS. As the most effective solution, GPU-acceleration achieves the state-of-the-art result of 3.3×10^9 trav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Central South University 2014-10, Vol.21 (10), p.3828-3836
1. Verfasser: 杨博 卢凯 高颖慧 徐凯 王小平 程志权
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3836
container_issue 10
container_start_page 3828
container_title Journal of Central South University
container_volume 21
creator 杨博 卢凯 高颖慧 徐凯 王小平 程志权
description Breadth-first search(BFS) is an important kernel for graph traversal and has been used by many graph processing applications. Extensive studies have been devoted in boosting the performance of BFS. As the most effective solution, GPU-acceleration achieves the state-of-the-art result of 3.3×10^9 traversed edges per second on a NVIDIA Tesla C2050 GPU. A novel vertex frontier based GPU BFS algorithm is proposed, and its main features are three-fold. Firstly, to obtain a better workload balance for irregular graphs, a virtual-queue task decomposition and mapping strategy is introduced for vertex frontier expanding. Secondly, a global deduplicate detection scheme is proposed to remove reduplicative vertices from vertex frontier effectively. Finally, a GPU-based bottom-up BFS approach is employed to process large frontier. The experimental results demonstrate that the algorithm can achieve 10% improvement over the state-of-the-art method on diverse graphs. Especially, it exhibits 2-3 times speedup on low-diameter and scale-free graphs over the state-of-the-art on a NVIDIA Tesla K20 c GPU, reaching a peak traversal rate of 11.2×10^9 edges/s.
doi_str_mv 10.1007/s11771-014-2368-7
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zngydxxb_e201410015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663018336</cqvip_id><wanfj_id>zngydxxb_e201410015</wanfj_id><sourcerecordid>zngydxxb_e201410015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-5a05320c1a3442cb0efd63904ec7f1193ec2df5331b48580b249a557d24c79e63</originalsourceid><addsrcrecordid>eNp9kMFOAyEQhonRxKb6AN42Xg0KzALL0TRamzTRgz0TloXtGstWWGvr00vTRm-eZg7_N3_mQ-iKkltKiLxLlEpJMaElZiAqLE_QiDEmMWcMTvNOFMesUuocXabU1QQoEyCUGKFqtlrHftOFtti4OLgt9rEPQ-diUZvkmmL6sijq6EwzLLHvYhqK5Ey0ywt05s17cpfHOUaLx4fXyROeP09nk_s5tkBgwNwQDoxYaqAsma2J840ARUpnpadUgbOs8RyA1mXFK1KzUhnOZcNKK5UTMEY3h7tfJngTWv3Wf8aQG_V3aHfNdltrx_LnWQTlOU0PaRv7lKLzeh27lYk7TYneu9IHVzoTeu9Ky8ywA5NyNrQu_lX8B10fi5Z9aD8y99skBBBaAQj4AZKpdkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving vertex-frontier based GPU breadth-first search</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>杨博 卢凯 高颖慧 徐凯 王小平 程志权</creator><creatorcontrib>杨博 卢凯 高颖慧 徐凯 王小平 程志权</creatorcontrib><description>Breadth-first search(BFS) is an important kernel for graph traversal and has been used by many graph processing applications. Extensive studies have been devoted in boosting the performance of BFS. As the most effective solution, GPU-acceleration achieves the state-of-the-art result of 3.3×10^9 traversed edges per second on a NVIDIA Tesla C2050 GPU. A novel vertex frontier based GPU BFS algorithm is proposed, and its main features are three-fold. Firstly, to obtain a better workload balance for irregular graphs, a virtual-queue task decomposition and mapping strategy is introduced for vertex frontier expanding. Secondly, a global deduplicate detection scheme is proposed to remove reduplicative vertices from vertex frontier effectively. Finally, a GPU-based bottom-up BFS approach is employed to process large frontier. The experimental results demonstrate that the algorithm can achieve 10% improvement over the state-of-the-art method on diverse graphs. Especially, it exhibits 2-3 times speedup on low-diameter and scale-free graphs over the state-of-the-art on a NVIDIA Tesla K20 c GPU, reaching a peak traversal rate of 11.2×10^9 edges/s.</description><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-014-2368-7</identifier><language>eng</language><publisher>Heidelberg: Central South University</publisher><subject>BFS ; Engineering ; GPU ; Metallic Materials ; NVIDIA ; Tesla ; 图形处理 ; 广度优先搜索 ; 负载平衡 ; 顶点</subject><ispartof>Journal of Central South University, 2014-10, Vol.21 (10), p.3828-3836</ispartof><rights>Central South University Press and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-5a05320c1a3442cb0efd63904ec7f1193ec2df5331b48580b249a557d24c79e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85521A/85521A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11771-014-2368-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11771-014-2368-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>杨博 卢凯 高颖慧 徐凯 王小平 程志权</creatorcontrib><title>Improving vertex-frontier based GPU breadth-first search</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ</addtitle><addtitle>Journal of Central South University of Technology</addtitle><description>Breadth-first search(BFS) is an important kernel for graph traversal and has been used by many graph processing applications. Extensive studies have been devoted in boosting the performance of BFS. As the most effective solution, GPU-acceleration achieves the state-of-the-art result of 3.3×10^9 traversed edges per second on a NVIDIA Tesla C2050 GPU. A novel vertex frontier based GPU BFS algorithm is proposed, and its main features are three-fold. Firstly, to obtain a better workload balance for irregular graphs, a virtual-queue task decomposition and mapping strategy is introduced for vertex frontier expanding. Secondly, a global deduplicate detection scheme is proposed to remove reduplicative vertices from vertex frontier effectively. Finally, a GPU-based bottom-up BFS approach is employed to process large frontier. The experimental results demonstrate that the algorithm can achieve 10% improvement over the state-of-the-art method on diverse graphs. Especially, it exhibits 2-3 times speedup on low-diameter and scale-free graphs over the state-of-the-art on a NVIDIA Tesla K20 c GPU, reaching a peak traversal rate of 11.2×10^9 edges/s.</description><subject>BFS</subject><subject>Engineering</subject><subject>GPU</subject><subject>Metallic Materials</subject><subject>NVIDIA</subject><subject>Tesla</subject><subject>图形处理</subject><subject>广度优先搜索</subject><subject>负载平衡</subject><subject>顶点</subject><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAyEQhonRxKb6AN42Xg0KzALL0TRamzTRgz0TloXtGstWWGvr00vTRm-eZg7_N3_mQ-iKkltKiLxLlEpJMaElZiAqLE_QiDEmMWcMTvNOFMesUuocXabU1QQoEyCUGKFqtlrHftOFtti4OLgt9rEPQ-diUZvkmmL6sijq6EwzLLHvYhqK5Ey0ywt05s17cpfHOUaLx4fXyROeP09nk_s5tkBgwNwQDoxYaqAsma2J840ARUpnpadUgbOs8RyA1mXFK1KzUhnOZcNKK5UTMEY3h7tfJngTWv3Wf8aQG_V3aHfNdltrx_LnWQTlOU0PaRv7lKLzeh27lYk7TYneu9IHVzoTeu9Ky8ywA5NyNrQu_lX8B10fi5Z9aD8y99skBBBaAQj4AZKpdkg</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>杨博 卢凯 高颖慧 徐凯 王小平 程志权</creator><general>Central South University</general><general>Science and Technology on Parallel and Distributed Processing Laboratory,National University of Defense Technology, Changsha 410073, China</general><general>College of Computer, National University of Defense Technology, Changsha 410073, China%Department of Electronic Science and Engineering, National University of Defense Technology,Changsha 410073, China%Avatar Science Company, Guangzhou 510001, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20141001</creationdate><title>Improving vertex-frontier based GPU breadth-first search</title><author>杨博 卢凯 高颖慧 徐凯 王小平 程志权</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-5a05320c1a3442cb0efd63904ec7f1193ec2df5331b48580b249a557d24c79e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>BFS</topic><topic>Engineering</topic><topic>GPU</topic><topic>Metallic Materials</topic><topic>NVIDIA</topic><topic>Tesla</topic><topic>图形处理</topic><topic>广度优先搜索</topic><topic>负载平衡</topic><topic>顶点</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>杨博 卢凯 高颖慧 徐凯 王小平 程志权</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>杨博 卢凯 高颖慧 徐凯 王小平 程志权</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving vertex-frontier based GPU breadth-first search</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ</stitle><addtitle>Journal of Central South University of Technology</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>21</volume><issue>10</issue><spage>3828</spage><epage>3836</epage><pages>3828-3836</pages><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>Breadth-first search(BFS) is an important kernel for graph traversal and has been used by many graph processing applications. Extensive studies have been devoted in boosting the performance of BFS. As the most effective solution, GPU-acceleration achieves the state-of-the-art result of 3.3×10^9 traversed edges per second on a NVIDIA Tesla C2050 GPU. A novel vertex frontier based GPU BFS algorithm is proposed, and its main features are three-fold. Firstly, to obtain a better workload balance for irregular graphs, a virtual-queue task decomposition and mapping strategy is introduced for vertex frontier expanding. Secondly, a global deduplicate detection scheme is proposed to remove reduplicative vertices from vertex frontier effectively. Finally, a GPU-based bottom-up BFS approach is employed to process large frontier. The experimental results demonstrate that the algorithm can achieve 10% improvement over the state-of-the-art method on diverse graphs. Especially, it exhibits 2-3 times speedup on low-diameter and scale-free graphs over the state-of-the-art on a NVIDIA Tesla K20 c GPU, reaching a peak traversal rate of 11.2×10^9 edges/s.</abstract><cop>Heidelberg</cop><pub>Central South University</pub><doi>10.1007/s11771-014-2368-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-2899
ispartof Journal of Central South University, 2014-10, Vol.21 (10), p.3828-3836
issn 2095-2899
2227-5223
language eng
recordid cdi_wanfang_journals_zngydxxb_e201410015
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects BFS
Engineering
GPU
Metallic Materials
NVIDIA
Tesla
图形处理
广度优先搜索
负载平衡
顶点
title Improving vertex-frontier based GPU breadth-first search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20vertex-frontier%20based%20GPU%20breadth-first%20search&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=%E6%9D%A8%E5%8D%9A%20%E5%8D%A2%E5%87%AF%20%E9%AB%98%E9%A2%96%E6%85%A7%20%E5%BE%90%E5%87%AF%20%E7%8E%8B%E5%B0%8F%E5%B9%B3%20%E7%A8%8B%E5%BF%97%E6%9D%83&rft.date=2014-10-01&rft.volume=21&rft.issue=10&rft.spage=3828&rft.epage=3836&rft.pages=3828-3836&rft.issn=2095-2899&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-014-2368-7&rft_dat=%3Cwanfang_jour_cross%3Ezngydxxb_e201410015%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=663018336&rft_wanfj_id=zngydxxb_e201410015&rfr_iscdi=true