Improving vertex-frontier based GPU breadth-first search
Breadth-first search(BFS) is an important kernel for graph traversal and has been used by many graph processing applications. Extensive studies have been devoted in boosting the performance of BFS. As the most effective solution, GPU-acceleration achieves the state-of-the-art result of 3.3×10^9 trav...
Gespeichert in:
Veröffentlicht in: | Journal of Central South University 2014-10, Vol.21 (10), p.3828-3836 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3836 |
---|---|
container_issue | 10 |
container_start_page | 3828 |
container_title | Journal of Central South University |
container_volume | 21 |
creator | 杨博 卢凯 高颖慧 徐凯 王小平 程志权 |
description | Breadth-first search(BFS) is an important kernel for graph traversal and has been used by many graph processing applications. Extensive studies have been devoted in boosting the performance of BFS. As the most effective solution, GPU-acceleration achieves the state-of-the-art result of 3.3×10^9 traversed edges per second on a NVIDIA Tesla C2050 GPU. A novel vertex frontier based GPU BFS algorithm is proposed, and its main features are three-fold. Firstly, to obtain a better workload balance for irregular graphs, a virtual-queue task decomposition and mapping strategy is introduced for vertex frontier expanding. Secondly, a global deduplicate detection scheme is proposed to remove reduplicative vertices from vertex frontier effectively. Finally, a GPU-based bottom-up BFS approach is employed to process large frontier. The experimental results demonstrate that the algorithm can achieve 10% improvement over the state-of-the-art method on diverse graphs. Especially, it exhibits 2-3 times speedup on low-diameter and scale-free graphs over the state-of-the-art on a NVIDIA Tesla K20 c GPU, reaching a peak traversal rate of 11.2×10^9 edges/s. |
doi_str_mv | 10.1007/s11771-014-2368-7 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zngydxxb_e201410015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663018336</cqvip_id><wanfj_id>zngydxxb_e201410015</wanfj_id><sourcerecordid>zngydxxb_e201410015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-5a05320c1a3442cb0efd63904ec7f1193ec2df5331b48580b249a557d24c79e63</originalsourceid><addsrcrecordid>eNp9kMFOAyEQhonRxKb6AN42Xg0KzALL0TRamzTRgz0TloXtGstWWGvr00vTRm-eZg7_N3_mQ-iKkltKiLxLlEpJMaElZiAqLE_QiDEmMWcMTvNOFMesUuocXabU1QQoEyCUGKFqtlrHftOFtti4OLgt9rEPQ-diUZvkmmL6sijq6EwzLLHvYhqK5Ey0ywt05s17cpfHOUaLx4fXyROeP09nk_s5tkBgwNwQDoxYaqAsma2J840ARUpnpadUgbOs8RyA1mXFK1KzUhnOZcNKK5UTMEY3h7tfJngTWv3Wf8aQG_V3aHfNdltrx_LnWQTlOU0PaRv7lKLzeh27lYk7TYneu9IHVzoTeu9Ky8ywA5NyNrQu_lX8B10fi5Z9aD8y99skBBBaAQj4AZKpdkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving vertex-frontier based GPU breadth-first search</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>杨博 卢凯 高颖慧 徐凯 王小平 程志权</creator><creatorcontrib>杨博 卢凯 高颖慧 徐凯 王小平 程志权</creatorcontrib><description>Breadth-first search(BFS) is an important kernel for graph traversal and has been used by many graph processing applications. Extensive studies have been devoted in boosting the performance of BFS. As the most effective solution, GPU-acceleration achieves the state-of-the-art result of 3.3×10^9 traversed edges per second on a NVIDIA Tesla C2050 GPU. A novel vertex frontier based GPU BFS algorithm is proposed, and its main features are three-fold. Firstly, to obtain a better workload balance for irregular graphs, a virtual-queue task decomposition and mapping strategy is introduced for vertex frontier expanding. Secondly, a global deduplicate detection scheme is proposed to remove reduplicative vertices from vertex frontier effectively. Finally, a GPU-based bottom-up BFS approach is employed to process large frontier. The experimental results demonstrate that the algorithm can achieve 10% improvement over the state-of-the-art method on diverse graphs. Especially, it exhibits 2-3 times speedup on low-diameter and scale-free graphs over the state-of-the-art on a NVIDIA Tesla K20 c GPU, reaching a peak traversal rate of 11.2×10^9 edges/s.</description><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-014-2368-7</identifier><language>eng</language><publisher>Heidelberg: Central South University</publisher><subject>BFS ; Engineering ; GPU ; Metallic Materials ; NVIDIA ; Tesla ; 图形处理 ; 广度优先搜索 ; 负载平衡 ; 顶点</subject><ispartof>Journal of Central South University, 2014-10, Vol.21 (10), p.3828-3836</ispartof><rights>Central South University Press and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-5a05320c1a3442cb0efd63904ec7f1193ec2df5331b48580b249a557d24c79e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85521A/85521A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11771-014-2368-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11771-014-2368-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>杨博 卢凯 高颖慧 徐凯 王小平 程志权</creatorcontrib><title>Improving vertex-frontier based GPU breadth-first search</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ</addtitle><addtitle>Journal of Central South University of Technology</addtitle><description>Breadth-first search(BFS) is an important kernel for graph traversal and has been used by many graph processing applications. Extensive studies have been devoted in boosting the performance of BFS. As the most effective solution, GPU-acceleration achieves the state-of-the-art result of 3.3×10^9 traversed edges per second on a NVIDIA Tesla C2050 GPU. A novel vertex frontier based GPU BFS algorithm is proposed, and its main features are three-fold. Firstly, to obtain a better workload balance for irregular graphs, a virtual-queue task decomposition and mapping strategy is introduced for vertex frontier expanding. Secondly, a global deduplicate detection scheme is proposed to remove reduplicative vertices from vertex frontier effectively. Finally, a GPU-based bottom-up BFS approach is employed to process large frontier. The experimental results demonstrate that the algorithm can achieve 10% improvement over the state-of-the-art method on diverse graphs. Especially, it exhibits 2-3 times speedup on low-diameter and scale-free graphs over the state-of-the-art on a NVIDIA Tesla K20 c GPU, reaching a peak traversal rate of 11.2×10^9 edges/s.</description><subject>BFS</subject><subject>Engineering</subject><subject>GPU</subject><subject>Metallic Materials</subject><subject>NVIDIA</subject><subject>Tesla</subject><subject>图形处理</subject><subject>广度优先搜索</subject><subject>负载平衡</subject><subject>顶点</subject><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAyEQhonRxKb6AN42Xg0KzALL0TRamzTRgz0TloXtGstWWGvr00vTRm-eZg7_N3_mQ-iKkltKiLxLlEpJMaElZiAqLE_QiDEmMWcMTvNOFMesUuocXabU1QQoEyCUGKFqtlrHftOFtti4OLgt9rEPQ-diUZvkmmL6sijq6EwzLLHvYhqK5Ey0ywt05s17cpfHOUaLx4fXyROeP09nk_s5tkBgwNwQDoxYaqAsma2J840ARUpnpadUgbOs8RyA1mXFK1KzUhnOZcNKK5UTMEY3h7tfJngTWv3Wf8aQG_V3aHfNdltrx_LnWQTlOU0PaRv7lKLzeh27lYk7TYneu9IHVzoTeu9Ky8ywA5NyNrQu_lX8B10fi5Z9aD8y99skBBBaAQj4AZKpdkg</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>杨博 卢凯 高颖慧 徐凯 王小平 程志权</creator><general>Central South University</general><general>Science and Technology on Parallel and Distributed Processing Laboratory,National University of Defense Technology, Changsha 410073, China</general><general>College of Computer, National University of Defense Technology, Changsha 410073, China%Department of Electronic Science and Engineering, National University of Defense Technology,Changsha 410073, China%Avatar Science Company, Guangzhou 510001, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20141001</creationdate><title>Improving vertex-frontier based GPU breadth-first search</title><author>杨博 卢凯 高颖慧 徐凯 王小平 程志权</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-5a05320c1a3442cb0efd63904ec7f1193ec2df5331b48580b249a557d24c79e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>BFS</topic><topic>Engineering</topic><topic>GPU</topic><topic>Metallic Materials</topic><topic>NVIDIA</topic><topic>Tesla</topic><topic>图形处理</topic><topic>广度优先搜索</topic><topic>负载平衡</topic><topic>顶点</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>杨博 卢凯 高颖慧 徐凯 王小平 程志权</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>杨博 卢凯 高颖慧 徐凯 王小平 程志权</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving vertex-frontier based GPU breadth-first search</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ</stitle><addtitle>Journal of Central South University of Technology</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>21</volume><issue>10</issue><spage>3828</spage><epage>3836</epage><pages>3828-3836</pages><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>Breadth-first search(BFS) is an important kernel for graph traversal and has been used by many graph processing applications. Extensive studies have been devoted in boosting the performance of BFS. As the most effective solution, GPU-acceleration achieves the state-of-the-art result of 3.3×10^9 traversed edges per second on a NVIDIA Tesla C2050 GPU. A novel vertex frontier based GPU BFS algorithm is proposed, and its main features are three-fold. Firstly, to obtain a better workload balance for irregular graphs, a virtual-queue task decomposition and mapping strategy is introduced for vertex frontier expanding. Secondly, a global deduplicate detection scheme is proposed to remove reduplicative vertices from vertex frontier effectively. Finally, a GPU-based bottom-up BFS approach is employed to process large frontier. The experimental results demonstrate that the algorithm can achieve 10% improvement over the state-of-the-art method on diverse graphs. Especially, it exhibits 2-3 times speedup on low-diameter and scale-free graphs over the state-of-the-art on a NVIDIA Tesla K20 c GPU, reaching a peak traversal rate of 11.2×10^9 edges/s.</abstract><cop>Heidelberg</cop><pub>Central South University</pub><doi>10.1007/s11771-014-2368-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-2899 |
ispartof | Journal of Central South University, 2014-10, Vol.21 (10), p.3828-3836 |
issn | 2095-2899 2227-5223 |
language | eng |
recordid | cdi_wanfang_journals_zngydxxb_e201410015 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | BFS Engineering GPU Metallic Materials NVIDIA Tesla 图形处理 广度优先搜索 负载平衡 顶点 |
title | Improving vertex-frontier based GPU breadth-first search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20vertex-frontier%20based%20GPU%20breadth-first%20search&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=%E6%9D%A8%E5%8D%9A%20%E5%8D%A2%E5%87%AF%20%E9%AB%98%E9%A2%96%E6%85%A7%20%E5%BE%90%E5%87%AF%20%E7%8E%8B%E5%B0%8F%E5%B9%B3%20%E7%A8%8B%E5%BF%97%E6%9D%83&rft.date=2014-10-01&rft.volume=21&rft.issue=10&rft.spage=3828&rft.epage=3836&rft.pages=3828-3836&rft.issn=2095-2899&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-014-2368-7&rft_dat=%3Cwanfang_jour_cross%3Ezngydxxb_e201410015%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=663018336&rft_wanfj_id=zngydxxb_e201410015&rfr_iscdi=true |