Performance assisted enhancement based on change point detection and Kalman filtering

A performance assisted enhancement Kalman filtering algorithm (PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contamination" caused by error GPS data. This filtering algorithm effectively combined fault esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Central South University 2013-12, Vol.20 (12), p.3528-3535
1. Verfasser: 任孝平 王健 薛志超 谷明琴
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3535
container_issue 12
container_start_page 3528
container_title Journal of Central South University
container_volume 20
creator 任孝平 王健 薛志超 谷明琴
description A performance assisted enhancement Kalman filtering algorithm (PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contamination" caused by error GPS data. This filtering algorithm effectively combined fault estimation of raw GPS data and nonholonomic constraint of vehicle. In fault estimation, a change point detection algorithm based on abrupt change model was proposed. Statistical tool was then used to infer the future bound of GPS data, which can detect faults in GPS raw data. If any kinds of faults were detected, dead reckoning mechanism begins to compute current position. Nonholonomic constraint condition of vehicle was used to estimate velocity of vehicle and change point detection was added into classic Kalman filtering structure. Experiment on vehicle shows that even when the GPS signals are unavailable for a period of time, this method can also output high accuracy data.
doi_str_mv 10.1007/s11771-013-1878-z
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zngydxxb_e201312021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48549189</cqvip_id><wanfj_id>zngydxxb_e201312021</wanfj_id><sourcerecordid>zngydxxb_e201312021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-fd5249e83d4db5129f3e70a6b4eff07ee5dd64eb719391df12c7b74260f16ece3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EElXpA3ALZxTw2kkcH1HFn6gEB3q2nHidBrVOsYNo-_Q4SgU3Trv6vLOzHkIugd4ApeI2AAgBKQWeQinK9HBCJowxkeaM8dPYU5mnrJTynMxCaCvKgRW8kMWELN_Q285vtKsx0fEx9GgSdKsBbND1SaVDJJ1L6sgaTLZdG6nBHuu-jVg7k7zoddyQ2Hbdo29dc0HOrF4HnB3rlCwf7t_nT-ni9fF5frdIa57TPrUmZ5nEkpvMVDkwaTkKqosqQ2upQMyNKTKsBEguwVhgtahExgpqocAa-ZRcj3u_tbPxOvXRfXkXHdXBNXuz21UKWYwFGGUQp2Gcrn0Xgkertr7daL9XQNUQpBqDVFGhhiDVIWrYqAnb4WPo_yz-E10djVadaz6j7tcpK_NMQin5D9yzg0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance assisted enhancement based on change point detection and Kalman filtering</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>任孝平 王健 薛志超 谷明琴</creator><creatorcontrib>任孝平 王健 薛志超 谷明琴</creatorcontrib><description>A performance assisted enhancement Kalman filtering algorithm (PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contamination" caused by error GPS data. This filtering algorithm effectively combined fault estimation of raw GPS data and nonholonomic constraint of vehicle. In fault estimation, a change point detection algorithm based on abrupt change model was proposed. Statistical tool was then used to infer the future bound of GPS data, which can detect faults in GPS raw data. If any kinds of faults were detected, dead reckoning mechanism begins to compute current position. Nonholonomic constraint condition of vehicle was used to estimate velocity of vehicle and change point detection was added into classic Kalman filtering structure. Experiment on vehicle shows that even when the GPS signals are unavailable for a period of time, this method can also output high accuracy data.</description><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-013-1878-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Engineering ; GPS信号 ; GPS数据 ; Metallic Materials ; 卡尔曼滤波算法 ; 基础 ; 性能 ; 故障估计 ; 检测 ; 非完整约束</subject><ispartof>Journal of Central South University, 2013-12, Vol.20 (12), p.3528-3535</ispartof><rights>Central South University Press and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-fd5249e83d4db5129f3e70a6b4eff07ee5dd64eb719391df12c7b74260f16ece3</citedby><cites>FETCH-LOGICAL-c350t-fd5249e83d4db5129f3e70a6b4eff07ee5dd64eb719391df12c7b74260f16ece3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85521A/85521A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11771-013-1878-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11771-013-1878-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>任孝平 王健 薛志超 谷明琴</creatorcontrib><title>Performance assisted enhancement based on change point detection and Kalman filtering</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ</addtitle><addtitle>Journal of Central South University of Technology</addtitle><description>A performance assisted enhancement Kalman filtering algorithm (PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contamination" caused by error GPS data. This filtering algorithm effectively combined fault estimation of raw GPS data and nonholonomic constraint of vehicle. In fault estimation, a change point detection algorithm based on abrupt change model was proposed. Statistical tool was then used to infer the future bound of GPS data, which can detect faults in GPS raw data. If any kinds of faults were detected, dead reckoning mechanism begins to compute current position. Nonholonomic constraint condition of vehicle was used to estimate velocity of vehicle and change point detection was added into classic Kalman filtering structure. Experiment on vehicle shows that even when the GPS signals are unavailable for a period of time, this method can also output high accuracy data.</description><subject>Engineering</subject><subject>GPS信号</subject><subject>GPS数据</subject><subject>Metallic Materials</subject><subject>卡尔曼滤波算法</subject><subject>基础</subject><subject>性能</subject><subject>故障估计</subject><subject>检测</subject><subject>非完整约束</subject><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EElXpA3ALZxTw2kkcH1HFn6gEB3q2nHidBrVOsYNo-_Q4SgU3Trv6vLOzHkIugd4ApeI2AAgBKQWeQinK9HBCJowxkeaM8dPYU5mnrJTynMxCaCvKgRW8kMWELN_Q285vtKsx0fEx9GgSdKsBbND1SaVDJJ1L6sgaTLZdG6nBHuu-jVg7k7zoddyQ2Hbdo29dc0HOrF4HnB3rlCwf7t_nT-ni9fF5frdIa57TPrUmZ5nEkpvMVDkwaTkKqosqQ2upQMyNKTKsBEguwVhgtahExgpqocAa-ZRcj3u_tbPxOvXRfXkXHdXBNXuz21UKWYwFGGUQp2Gcrn0Xgkertr7daL9XQNUQpBqDVFGhhiDVIWrYqAnb4WPo_yz-E10djVadaz6j7tcpK_NMQin5D9yzg0I</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>任孝平 王健 薛志超 谷明琴</creator><general>Springer Berlin Heidelberg</general><general>Division of Mechanics and Acoustics, National Institute of Metrology, Beijing 100013, China%Faculty of Human Biology, University of Copenhagen, Copenhagen 1165, Denmark%Science &amp; Research Laboratories of Mychery, Wuhu 241009, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20131201</creationdate><title>Performance assisted enhancement based on change point detection and Kalman filtering</title><author>任孝平 王健 薛志超 谷明琴</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-fd5249e83d4db5129f3e70a6b4eff07ee5dd64eb719391df12c7b74260f16ece3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Engineering</topic><topic>GPS信号</topic><topic>GPS数据</topic><topic>Metallic Materials</topic><topic>卡尔曼滤波算法</topic><topic>基础</topic><topic>性能</topic><topic>故障估计</topic><topic>检测</topic><topic>非完整约束</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>任孝平 王健 薛志超 谷明琴</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>任孝平 王健 薛志超 谷明琴</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance assisted enhancement based on change point detection and Kalman filtering</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ</stitle><addtitle>Journal of Central South University of Technology</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>20</volume><issue>12</issue><spage>3528</spage><epage>3535</epage><pages>3528-3535</pages><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>A performance assisted enhancement Kalman filtering algorithm (PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contamination" caused by error GPS data. This filtering algorithm effectively combined fault estimation of raw GPS data and nonholonomic constraint of vehicle. In fault estimation, a change point detection algorithm based on abrupt change model was proposed. Statistical tool was then used to infer the future bound of GPS data, which can detect faults in GPS raw data. If any kinds of faults were detected, dead reckoning mechanism begins to compute current position. Nonholonomic constraint condition of vehicle was used to estimate velocity of vehicle and change point detection was added into classic Kalman filtering structure. Experiment on vehicle shows that even when the GPS signals are unavailable for a period of time, this method can also output high accuracy data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11771-013-1878-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-2899
ispartof Journal of Central South University, 2013-12, Vol.20 (12), p.3528-3535
issn 2095-2899
2227-5223
language eng
recordid cdi_wanfang_journals_zngydxxb_e201312021
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Engineering
GPS信号
GPS数据
Metallic Materials
卡尔曼滤波算法
基础
性能
故障估计
检测
非完整约束
title Performance assisted enhancement based on change point detection and Kalman filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20assisted%20enhancement%20based%20on%20change%20point%20detection%20and%20Kalman%20filtering&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=%E4%BB%BB%E5%AD%9D%E5%B9%B3%20%E7%8E%8B%E5%81%A5%20%E8%96%9B%E5%BF%97%E8%B6%85%20%E8%B0%B7%E6%98%8E%E7%90%B4&rft.date=2013-12-01&rft.volume=20&rft.issue=12&rft.spage=3528&rft.epage=3535&rft.pages=3528-3535&rft.issn=2095-2899&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-013-1878-z&rft_dat=%3Cwanfang_jour_cross%3Ezngydxxb_e201312021%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=48549189&rft_wanfj_id=zngydxxb_e201312021&rfr_iscdi=true