Generic reconstruction technology based on RST for multivariate time series of complex process industries
In order to effectively analyse the multivariate time series data of complex process, a generic reconstruction technology based on reduction theory of rough sets was proposed. Firstly, the phase space of multivariate time series was originally reconstructed by a classical reconstruction technology....
Gespeichert in:
Veröffentlicht in: | Journal of Central South University 2012-05, Vol.19 (5), p.1311-1316 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1316 |
---|---|
container_issue | 5 |
container_start_page | 1311 |
container_title | Journal of Central South University |
container_volume | 19 |
creator | 孔玲爽 阳春华 李建奇 朱红求 王雅琳 |
description | In order to effectively analyse the multivariate time series data of complex process, a generic reconstruction technology based on reduction theory of rough sets was proposed. Firstly, the phase space of multivariate time series was originally reconstructed by a classical reconstruction technology. Then, the original decision-table of rough set theory was set up according to the embedding dimensions and time-delays of the original reconstruction phase space, and the rough set reduction was used to delete the redundant dimensions and irrelevant variables and to reconstruct the generic phase space. Finally, the input vectors for the prediction of multivariate time series were extracted according to generic reconstruction results to identify the parameters of prediction model. Verification results show that the developed reconstruction method leads to better generalization ability for the prediction model and it is feasible and worthwhile for application. |
doi_str_mv | 10.1007/s11771-012-1143-x |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zngydxxb_e201205020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>41606588</cqvip_id><wanfj_id>zngydxxb_e201205020</wanfj_id><sourcerecordid>zngydxxb_e201205020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-3b92e434917de90e7654527e0c2722865d31ca7fd0e8c5e26b747498bd1813573</originalsourceid><addsrcrecordid>eNp9kF1LwzAYhYMoOOZ-gHfxWqr5aJr0UoZOYSDovA5t-raLbMlMOu389WZs6J1XgTfPcw4chC4puaGEyNtIqZQ0I5RllOY8G07QiDEmM8EYP0WjBImslCo_R5MYbU2oUqyUQo2QnYGDYA0OYLyLfdia3nqHezBL51e-2-G6itDgdHt5XeDWB7zernr7WQVb9YB7uwYcUwRE7Fts_HqzggFvgjcQI7au2abU9HuBztpqFWFyfMfo7eF-MX3M5s-zp-ndPDNckD7jdckg53lJZQMlAVmIXDAJxDDJmCpEw6mpZNsQUEYAK2qZy7xUdUMV5ULyMbo-5H5Vrq1cp9_9NrjUqL9dt2uGodbA0lREEEYSTQ-0CT7GAK3eBLuuwk5Tovfj6sO4Ohl6P64eksMOTkys6yD8VfwnXR2Llt51H8n7bcppQQqhFP8BdQmJgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generic reconstruction technology based on RST for multivariate time series of complex process industries</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>孔玲爽 阳春华 李建奇 朱红求 王雅琳</creator><creatorcontrib>孔玲爽 阳春华 李建奇 朱红求 王雅琳</creatorcontrib><description>In order to effectively analyse the multivariate time series data of complex process, a generic reconstruction technology based on reduction theory of rough sets was proposed. Firstly, the phase space of multivariate time series was originally reconstructed by a classical reconstruction technology. Then, the original decision-table of rough set theory was set up according to the embedding dimensions and time-delays of the original reconstruction phase space, and the rough set reduction was used to delete the redundant dimensions and irrelevant variables and to reconstruct the generic phase space. Finally, the input vectors for the prediction of multivariate time series were extracted according to generic reconstruction results to identify the parameters of prediction model. Verification results show that the developed reconstruction method leads to better generalization ability for the prediction model and it is feasible and worthwhile for application.</description><identifier>ISSN: 1005-9784</identifier><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-012-1143-x</identifier><language>eng</language><publisher>Heidelberg: Central South University</publisher><subject>Engineering ; Metallic Materials ; RST ; 基础 ; 多元时间序列 ; 多变量时间序列 ; 粗糙集理论 ; 通用 ; 重建技术 ; 重构相空间</subject><ispartof>Journal of Central South University, 2012-05, Vol.19 (5), p.1311-1316</ispartof><rights>Central South University Press and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-3b92e434917de90e7654527e0c2722865d31ca7fd0e8c5e26b747498bd1813573</citedby><cites>FETCH-LOGICAL-c350t-3b92e434917de90e7654527e0c2722865d31ca7fd0e8c5e26b747498bd1813573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85521A/85521A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11771-012-1143-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11771-012-1143-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>孔玲爽 阳春华 李建奇 朱红求 王雅琳</creatorcontrib><title>Generic reconstruction technology based on RST for multivariate time series of complex process industries</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ. Technol</addtitle><addtitle>Journal of Central South University of Technology</addtitle><description>In order to effectively analyse the multivariate time series data of complex process, a generic reconstruction technology based on reduction theory of rough sets was proposed. Firstly, the phase space of multivariate time series was originally reconstructed by a classical reconstruction technology. Then, the original decision-table of rough set theory was set up according to the embedding dimensions and time-delays of the original reconstruction phase space, and the rough set reduction was used to delete the redundant dimensions and irrelevant variables and to reconstruct the generic phase space. Finally, the input vectors for the prediction of multivariate time series were extracted according to generic reconstruction results to identify the parameters of prediction model. Verification results show that the developed reconstruction method leads to better generalization ability for the prediction model and it is feasible and worthwhile for application.</description><subject>Engineering</subject><subject>Metallic Materials</subject><subject>RST</subject><subject>基础</subject><subject>多元时间序列</subject><subject>多变量时间序列</subject><subject>粗糙集理论</subject><subject>通用</subject><subject>重建技术</subject><subject>重构相空间</subject><issn>1005-9784</issn><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAYhYMoOOZ-gHfxWqr5aJr0UoZOYSDovA5t-raLbMlMOu389WZs6J1XgTfPcw4chC4puaGEyNtIqZQ0I5RllOY8G07QiDEmM8EYP0WjBImslCo_R5MYbU2oUqyUQo2QnYGDYA0OYLyLfdia3nqHezBL51e-2-G6itDgdHt5XeDWB7zernr7WQVb9YB7uwYcUwRE7Fts_HqzggFvgjcQI7au2abU9HuBztpqFWFyfMfo7eF-MX3M5s-zp-ndPDNckD7jdckg53lJZQMlAVmIXDAJxDDJmCpEw6mpZNsQUEYAK2qZy7xUdUMV5ULyMbo-5H5Vrq1cp9_9NrjUqL9dt2uGodbA0lREEEYSTQ-0CT7GAK3eBLuuwk5Tovfj6sO4Ohl6P64eksMOTkys6yD8VfwnXR2Llt51H8n7bcppQQqhFP8BdQmJgA</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>孔玲爽 阳春华 李建奇 朱红求 王雅琳</creator><general>Central South University</general><general>College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412000, China%School of Information Science and Engineering, Central South University, Changsha 410083, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20120501</creationdate><title>Generic reconstruction technology based on RST for multivariate time series of complex process industries</title><author>孔玲爽 阳春华 李建奇 朱红求 王雅琳</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-3b92e434917de90e7654527e0c2722865d31ca7fd0e8c5e26b747498bd1813573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Engineering</topic><topic>Metallic Materials</topic><topic>RST</topic><topic>基础</topic><topic>多元时间序列</topic><topic>多变量时间序列</topic><topic>粗糙集理论</topic><topic>通用</topic><topic>重建技术</topic><topic>重构相空间</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>孔玲爽 阳春华 李建奇 朱红求 王雅琳</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>孔玲爽 阳春华 李建奇 朱红求 王雅琳</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generic reconstruction technology based on RST for multivariate time series of complex process industries</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ. Technol</stitle><addtitle>Journal of Central South University of Technology</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>19</volume><issue>5</issue><spage>1311</spage><epage>1316</epage><pages>1311-1316</pages><issn>1005-9784</issn><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>In order to effectively analyse the multivariate time series data of complex process, a generic reconstruction technology based on reduction theory of rough sets was proposed. Firstly, the phase space of multivariate time series was originally reconstructed by a classical reconstruction technology. Then, the original decision-table of rough set theory was set up according to the embedding dimensions and time-delays of the original reconstruction phase space, and the rough set reduction was used to delete the redundant dimensions and irrelevant variables and to reconstruct the generic phase space. Finally, the input vectors for the prediction of multivariate time series were extracted according to generic reconstruction results to identify the parameters of prediction model. Verification results show that the developed reconstruction method leads to better generalization ability for the prediction model and it is feasible and worthwhile for application.</abstract><cop>Heidelberg</cop><pub>Central South University</pub><doi>10.1007/s11771-012-1143-x</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-9784 |
ispartof | Journal of Central South University, 2012-05, Vol.19 (5), p.1311-1316 |
issn | 1005-9784 2095-2899 2227-5223 |
language | eng |
recordid | cdi_wanfang_journals_zngydxxb_e201205020 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Engineering Metallic Materials RST 基础 多元时间序列 多变量时间序列 粗糙集理论 通用 重建技术 重构相空间 |
title | Generic reconstruction technology based on RST for multivariate time series of complex process industries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generic%20reconstruction%20technology%20based%20on%20RST%20for%20multivariate%20time%20series%20of%20complex%20process%20industries&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=%E5%AD%94%E7%8E%B2%E7%88%BD%20%E9%98%B3%E6%98%A5%E5%8D%8E%20%E6%9D%8E%E5%BB%BA%E5%A5%87%20%E6%9C%B1%E7%BA%A2%E6%B1%82%20%E7%8E%8B%E9%9B%85%E7%90%B3&rft.date=2012-05-01&rft.volume=19&rft.issue=5&rft.spage=1311&rft.epage=1316&rft.pages=1311-1316&rft.issn=1005-9784&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-012-1143-x&rft_dat=%3Cwanfang_jour_cross%3Ezngydxxb_e201205020%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=41606588&rft_wanfj_id=zngydxxb_e201205020&rfr_iscdi=true |