Traffic condition estimation with pre-selection space time model

A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector, especially non-detector locations. The space time model is better to integrate the spatial and temporal information comprehensibly. Firstly, the influencing factors of the "cause nodes" were studie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Central South University 2012, Vol.19 (1), p.206-212
1. Verfasser: 董宏辉 孙晓亮 贾利民 李海舰 秦勇
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 1
container_start_page 206
container_title Journal of Central South University
container_volume 19
creator 董宏辉 孙晓亮 贾利民 李海舰 秦勇
description A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector, especially non-detector locations. The space time model is better to integrate the spatial and temporal information comprehensibly. Firstly, the influencing factors of the "cause nodes" were studied, and then the pre-selection "cause nodes" procedure which utilizes the Pearson correlation coefficient to evaluate the relevancy of the traffic data was introduced. Finally, only the most relevant data were collected to compose the space time model. The experimental results with the actual data demonstrate that the model performs better than other three models.
doi_str_mv 10.1007/s11771-012-0993-6
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zngydxxb_e201201030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>40725992</cqvip_id><wanfj_id>zngydxxb_e201201030</wanfj_id><sourcerecordid>zngydxxb_e201201030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-4637d90fe0d72a82f7b2908e7b366ed12024299a02e071ecd2bc1b71400022103</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGp_gLf1LNHJ7Ec2N6X4BQUv9Ryy2dntSputSaWtv97ULXrzlCE8z7zMy9ilgBsBIG-DEFIKDgI5KJXy4oSNEFHyHDE9ZaMI5VzJMjtnkxC6CkRZopJ5OWJ3c2-aprOJ7V3dbbreJRQ23cr8jNtus0jWnnigJdmfr7A2lpJIULLqa1pesLPGLANNju-YvT0-zKfPfPb69DK9n3Gb5rDhWZHKWkFDUEs0JTayQgUlySotCqoFAmaolAEkkIJsjZUVlRQZACAKSMfseti7Na4xrtXv_ad3MVF_uXZf73aVJowNQGQPtBho6_sQPDV67eNRfq8F6ENneuhMR0MfOtNFdHBwQmRdS_4v4j_p6hi06F37Eb3fpAwk5kph-g2oLHju</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Traffic condition estimation with pre-selection space time model</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>董宏辉 孙晓亮 贾利民 李海舰 秦勇</creator><creatorcontrib>董宏辉 孙晓亮 贾利民 李海舰 秦勇</creatorcontrib><description>A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector, especially non-detector locations. The space time model is better to integrate the spatial and temporal information comprehensibly. Firstly, the influencing factors of the "cause nodes" were studied, and then the pre-selection "cause nodes" procedure which utilizes the Pearson correlation coefficient to evaluate the relevancy of the traffic data was introduced. Finally, only the most relevant data were collected to compose the space time model. The experimental results with the actual data demonstrate that the model performs better than other three models.</description><identifier>ISSN: 1005-9784</identifier><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-012-0993-6</identifier><language>eng</language><publisher>Heidelberg: Central South University</publisher><subject>Engineering ; Metallic Materials ; Pearson相关系数 ; 交通条件 ; 交通状况 ; 影响因素 ; 数据检测 ; 时空模型 ; 模型估计 ; 预选</subject><ispartof>Journal of Central South University, 2012, Vol.19 (1), p.206-212</ispartof><rights>Central South University Press and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-4637d90fe0d72a82f7b2908e7b366ed12024299a02e071ecd2bc1b71400022103</citedby><cites>FETCH-LOGICAL-c350t-4637d90fe0d72a82f7b2908e7b366ed12024299a02e071ecd2bc1b71400022103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85521A/85521A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11771-012-0993-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11771-012-0993-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>董宏辉 孙晓亮 贾利民 李海舰 秦勇</creatorcontrib><title>Traffic condition estimation with pre-selection space time model</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ. Technol</addtitle><addtitle>Journal of Central South University of Technology</addtitle><description>A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector, especially non-detector locations. The space time model is better to integrate the spatial and temporal information comprehensibly. Firstly, the influencing factors of the "cause nodes" were studied, and then the pre-selection "cause nodes" procedure which utilizes the Pearson correlation coefficient to evaluate the relevancy of the traffic data was introduced. Finally, only the most relevant data were collected to compose the space time model. The experimental results with the actual data demonstrate that the model performs better than other three models.</description><subject>Engineering</subject><subject>Metallic Materials</subject><subject>Pearson相关系数</subject><subject>交通条件</subject><subject>交通状况</subject><subject>影响因素</subject><subject>数据检测</subject><subject>时空模型</subject><subject>模型估计</subject><subject>预选</subject><issn>1005-9784</issn><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGp_gLf1LNHJ7Ec2N6X4BQUv9Ryy2dntSputSaWtv97ULXrzlCE8z7zMy9ilgBsBIG-DEFIKDgI5KJXy4oSNEFHyHDE9ZaMI5VzJMjtnkxC6CkRZopJ5OWJ3c2-aprOJ7V3dbbreJRQ23cr8jNtus0jWnnigJdmfr7A2lpJIULLqa1pesLPGLANNju-YvT0-zKfPfPb69DK9n3Gb5rDhWZHKWkFDUEs0JTayQgUlySotCqoFAmaolAEkkIJsjZUVlRQZACAKSMfseti7Na4xrtXv_ad3MVF_uXZf73aVJowNQGQPtBho6_sQPDV67eNRfq8F6ENneuhMR0MfOtNFdHBwQmRdS_4v4j_p6hi06F37Eb3fpAwk5kph-g2oLHju</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>董宏辉 孙晓亮 贾利民 李海舰 秦勇</creator><general>Central South University</general><general>State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2012</creationdate><title>Traffic condition estimation with pre-selection space time model</title><author>董宏辉 孙晓亮 贾利民 李海舰 秦勇</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-4637d90fe0d72a82f7b2908e7b366ed12024299a02e071ecd2bc1b71400022103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Engineering</topic><topic>Metallic Materials</topic><topic>Pearson相关系数</topic><topic>交通条件</topic><topic>交通状况</topic><topic>影响因素</topic><topic>数据检测</topic><topic>时空模型</topic><topic>模型估计</topic><topic>预选</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>董宏辉 孙晓亮 贾利民 李海舰 秦勇</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>董宏辉 孙晓亮 贾利民 李海舰 秦勇</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic condition estimation with pre-selection space time model</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ. Technol</stitle><addtitle>Journal of Central South University of Technology</addtitle><date>2012</date><risdate>2012</risdate><volume>19</volume><issue>1</issue><spage>206</spage><epage>212</epage><pages>206-212</pages><issn>1005-9784</issn><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector, especially non-detector locations. The space time model is better to integrate the spatial and temporal information comprehensibly. Firstly, the influencing factors of the "cause nodes" were studied, and then the pre-selection "cause nodes" procedure which utilizes the Pearson correlation coefficient to evaluate the relevancy of the traffic data was introduced. Finally, only the most relevant data were collected to compose the space time model. The experimental results with the actual data demonstrate that the model performs better than other three models.</abstract><cop>Heidelberg</cop><pub>Central South University</pub><doi>10.1007/s11771-012-0993-6</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1005-9784
ispartof Journal of Central South University, 2012, Vol.19 (1), p.206-212
issn 1005-9784
2095-2899
2227-5223
language eng
recordid cdi_wanfang_journals_zngydxxb_e201201030
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Engineering
Metallic Materials
Pearson相关系数
交通条件
交通状况
影响因素
数据检测
时空模型
模型估计
预选
title Traffic condition estimation with pre-selection space time model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic%20condition%20estimation%20with%20pre-selection%20space%20time%20model&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=%E8%91%A3%E5%AE%8F%E8%BE%89%20%E5%AD%99%E6%99%93%E4%BA%AE%20%E8%B4%BE%E5%88%A9%E6%B0%91%20%E6%9D%8E%E6%B5%B7%E8%88%B0%20%E7%A7%A6%E5%8B%87&rft.date=2012&rft.volume=19&rft.issue=1&rft.spage=206&rft.epage=212&rft.pages=206-212&rft.issn=1005-9784&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-012-0993-6&rft_dat=%3Cwanfang_jour_cross%3Ezngydxxb_e201201030%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=40725992&rft_wanfj_id=zngydxxb_e201201030&rfr_iscdi=true