Traffic condition estimation with pre-selection space time model
A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector, especially non-detector locations. The space time model is better to integrate the spatial and temporal information comprehensibly. Firstly, the influencing factors of the "cause nodes" were studie...
Gespeichert in:
Veröffentlicht in: | Journal of Central South University 2012, Vol.19 (1), p.206-212 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 1 |
container_start_page | 206 |
container_title | Journal of Central South University |
container_volume | 19 |
creator | 董宏辉 孙晓亮 贾利民 李海舰 秦勇 |
description | A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector, especially non-detector locations. The space time model is better to integrate the spatial and temporal information comprehensibly. Firstly, the influencing factors of the "cause nodes" were studied, and then the pre-selection "cause nodes" procedure which utilizes the Pearson correlation coefficient to evaluate the relevancy of the traffic data was introduced. Finally, only the most relevant data were collected to compose the space time model. The experimental results with the actual data demonstrate that the model performs better than other three models. |
doi_str_mv | 10.1007/s11771-012-0993-6 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zngydxxb_e201201030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>40725992</cqvip_id><wanfj_id>zngydxxb_e201201030</wanfj_id><sourcerecordid>zngydxxb_e201201030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-4637d90fe0d72a82f7b2908e7b366ed12024299a02e071ecd2bc1b71400022103</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGp_gLf1LNHJ7Ec2N6X4BQUv9Ryy2dntSputSaWtv97ULXrzlCE8z7zMy9ilgBsBIG-DEFIKDgI5KJXy4oSNEFHyHDE9ZaMI5VzJMjtnkxC6CkRZopJ5OWJ3c2-aprOJ7V3dbbreJRQ23cr8jNtus0jWnnigJdmfr7A2lpJIULLqa1pesLPGLANNju-YvT0-zKfPfPb69DK9n3Gb5rDhWZHKWkFDUEs0JTayQgUlySotCqoFAmaolAEkkIJsjZUVlRQZACAKSMfseti7Na4xrtXv_ad3MVF_uXZf73aVJowNQGQPtBho6_sQPDV67eNRfq8F6ENneuhMR0MfOtNFdHBwQmRdS_4v4j_p6hi06F37Eb3fpAwk5kph-g2oLHju</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Traffic condition estimation with pre-selection space time model</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>董宏辉 孙晓亮 贾利民 李海舰 秦勇</creator><creatorcontrib>董宏辉 孙晓亮 贾利民 李海舰 秦勇</creatorcontrib><description>A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector, especially non-detector locations. The space time model is better to integrate the spatial and temporal information comprehensibly. Firstly, the influencing factors of the "cause nodes" were studied, and then the pre-selection "cause nodes" procedure which utilizes the Pearson correlation coefficient to evaluate the relevancy of the traffic data was introduced. Finally, only the most relevant data were collected to compose the space time model. The experimental results with the actual data demonstrate that the model performs better than other three models.</description><identifier>ISSN: 1005-9784</identifier><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-012-0993-6</identifier><language>eng</language><publisher>Heidelberg: Central South University</publisher><subject>Engineering ; Metallic Materials ; Pearson相关系数 ; 交通条件 ; 交通状况 ; 影响因素 ; 数据检测 ; 时空模型 ; 模型估计 ; 预选</subject><ispartof>Journal of Central South University, 2012, Vol.19 (1), p.206-212</ispartof><rights>Central South University Press and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-4637d90fe0d72a82f7b2908e7b366ed12024299a02e071ecd2bc1b71400022103</citedby><cites>FETCH-LOGICAL-c350t-4637d90fe0d72a82f7b2908e7b366ed12024299a02e071ecd2bc1b71400022103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85521A/85521A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11771-012-0993-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11771-012-0993-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>董宏辉 孙晓亮 贾利民 李海舰 秦勇</creatorcontrib><title>Traffic condition estimation with pre-selection space time model</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ. Technol</addtitle><addtitle>Journal of Central South University of Technology</addtitle><description>A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector, especially non-detector locations. The space time model is better to integrate the spatial and temporal information comprehensibly. Firstly, the influencing factors of the "cause nodes" were studied, and then the pre-selection "cause nodes" procedure which utilizes the Pearson correlation coefficient to evaluate the relevancy of the traffic data was introduced. Finally, only the most relevant data were collected to compose the space time model. The experimental results with the actual data demonstrate that the model performs better than other three models.</description><subject>Engineering</subject><subject>Metallic Materials</subject><subject>Pearson相关系数</subject><subject>交通条件</subject><subject>交通状况</subject><subject>影响因素</subject><subject>数据检测</subject><subject>时空模型</subject><subject>模型估计</subject><subject>预选</subject><issn>1005-9784</issn><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGp_gLf1LNHJ7Ec2N6X4BQUv9Ryy2dntSputSaWtv97ULXrzlCE8z7zMy9ilgBsBIG-DEFIKDgI5KJXy4oSNEFHyHDE9ZaMI5VzJMjtnkxC6CkRZopJ5OWJ3c2-aprOJ7V3dbbreJRQ23cr8jNtus0jWnnigJdmfr7A2lpJIULLqa1pesLPGLANNju-YvT0-zKfPfPb69DK9n3Gb5rDhWZHKWkFDUEs0JTayQgUlySotCqoFAmaolAEkkIJsjZUVlRQZACAKSMfseti7Na4xrtXv_ad3MVF_uXZf73aVJowNQGQPtBho6_sQPDV67eNRfq8F6ENneuhMR0MfOtNFdHBwQmRdS_4v4j_p6hi06F37Eb3fpAwk5kph-g2oLHju</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>董宏辉 孙晓亮 贾利民 李海舰 秦勇</creator><general>Central South University</general><general>State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2012</creationdate><title>Traffic condition estimation with pre-selection space time model</title><author>董宏辉 孙晓亮 贾利民 李海舰 秦勇</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-4637d90fe0d72a82f7b2908e7b366ed12024299a02e071ecd2bc1b71400022103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Engineering</topic><topic>Metallic Materials</topic><topic>Pearson相关系数</topic><topic>交通条件</topic><topic>交通状况</topic><topic>影响因素</topic><topic>数据检测</topic><topic>时空模型</topic><topic>模型估计</topic><topic>预选</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>董宏辉 孙晓亮 贾利民 李海舰 秦勇</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>董宏辉 孙晓亮 贾利民 李海舰 秦勇</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic condition estimation with pre-selection space time model</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ. Technol</stitle><addtitle>Journal of Central South University of Technology</addtitle><date>2012</date><risdate>2012</risdate><volume>19</volume><issue>1</issue><spage>206</spage><epage>212</epage><pages>206-212</pages><issn>1005-9784</issn><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector, especially non-detector locations. The space time model is better to integrate the spatial and temporal information comprehensibly. Firstly, the influencing factors of the "cause nodes" were studied, and then the pre-selection "cause nodes" procedure which utilizes the Pearson correlation coefficient to evaluate the relevancy of the traffic data was introduced. Finally, only the most relevant data were collected to compose the space time model. The experimental results with the actual data demonstrate that the model performs better than other three models.</abstract><cop>Heidelberg</cop><pub>Central South University</pub><doi>10.1007/s11771-012-0993-6</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-9784 |
ispartof | Journal of Central South University, 2012, Vol.19 (1), p.206-212 |
issn | 1005-9784 2095-2899 2227-5223 |
language | eng |
recordid | cdi_wanfang_journals_zngydxxb_e201201030 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Engineering Metallic Materials Pearson相关系数 交通条件 交通状况 影响因素 数据检测 时空模型 模型估计 预选 |
title | Traffic condition estimation with pre-selection space time model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic%20condition%20estimation%20with%20pre-selection%20space%20time%20model&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=%E8%91%A3%E5%AE%8F%E8%BE%89%20%E5%AD%99%E6%99%93%E4%BA%AE%20%E8%B4%BE%E5%88%A9%E6%B0%91%20%E6%9D%8E%E6%B5%B7%E8%88%B0%20%E7%A7%A6%E5%8B%87&rft.date=2012&rft.volume=19&rft.issue=1&rft.spage=206&rft.epage=212&rft.pages=206-212&rft.issn=1005-9784&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-012-0993-6&rft_dat=%3Cwanfang_jour_cross%3Ezngydxxb_e201201030%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=40725992&rft_wanfj_id=zngydxxb_e201201030&rfr_iscdi=true |