Technology trends in large-scale high-efficiency network computing
Network technology is the basis for large-scale high-efficiency network computing, such as supercomputing, cloud computing, big data processing, and artificial intelligence computing. The network technologies of network computing systems in different fields not only learn from each other but also ha...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2022-12, Vol.23 (12), p.1733-1746 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1746 |
---|---|
container_issue | 12 |
container_start_page | 1733 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 23 |
creator | Su, Jinshu Zhao, Baokang Dai, Yi Cao, Jijun Wei, Ziling Zhao, Na Song, Congxi Liu, Yujing Xia, Yusheng |
description | Network technology is the basis for large-scale high-efficiency network computing, such as supercomputing, cloud computing, big data processing, and artificial intelligence computing. The network technologies of network computing systems in different fields not only learn from each other but also have targeted design and optimization. Considering it comprehensively, three development trends, i.e., integration, differentiation, and optimization, are summarized in this paper for network technologies in different fields. Integration reflects that there are no clear boundaries for network technologies in different fields, differentiation reflects that there are some unique solutions in different application fields or innovative solutions under new application requirements, and optimization reflects that there are some optimizations for specific scenarios. This paper can help academic researchers consider what should be done in the future and industry personnel consider how to build efficient practical network systems. |
doi_str_mv | 10.1631/FITEE.2200217 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zjdxxbc_e202212002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zjdxxbc_e202212002</wanfj_id><sourcerecordid>zjdxxbc_e202212002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-60206cb535c020b74d1efd9e9838938b3a6d37c4cc79566fd9153efd83a3c2233</originalsourceid><addsrcrecordid>eNpt0M9PwjAYgOHGaCJBjt6XeDMp9gdr16MSUBISL_PcdF03hqPFdgTwr7c4DBdP_ZI-_Zq8ANxjNMaM4qf5Ip_NxoQgRDC_AgOCRAoFoej6b8bZ5BaMQlgjhDDDgotsAF5yo1fWta4-Jp03tgxJY5NW-drAoFVrklVTr6CpqkY3xupjYk23d_4z0W6z3XWNre_ATaXaYEbncwg-5rN8-gaX76-L6fMSakpFBxkiiOkipamOU8EnJTZVKYzIaCZoVlDFSsr1RGsuUsbiFU5pFBlVVBNC6RA89nv3ylbK1nLtdt7GH-X3ujwcCi0NQYTgU4KIH3q89e5rZ0J30SSW4CRFnEcFe6W9C8GbSm59s1H-KDGSp6zyN6s8Z41-3PsQna2Nv2z9_8EPBwV31g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918725077</pqid></control><display><type>article</type><title>Technology trends in large-scale high-efficiency network computing</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Su, Jinshu ; Zhao, Baokang ; Dai, Yi ; Cao, Jijun ; Wei, Ziling ; Zhao, Na ; Song, Congxi ; Liu, Yujing ; Xia, Yusheng</creator><creatorcontrib>Su, Jinshu ; Zhao, Baokang ; Dai, Yi ; Cao, Jijun ; Wei, Ziling ; Zhao, Na ; Song, Congxi ; Liu, Yujing ; Xia, Yusheng</creatorcontrib><description>Network technology is the basis for large-scale high-efficiency network computing, such as supercomputing, cloud computing, big data processing, and artificial intelligence computing. The network technologies of network computing systems in different fields not only learn from each other but also have targeted design and optimization. Considering it comprehensively, three development trends, i.e., integration, differentiation, and optimization, are summarized in this paper for network technologies in different fields. Integration reflects that there are no clear boundaries for network technologies in different fields, differentiation reflects that there are some unique solutions in different application fields or innovative solutions under new application requirements, and optimization reflects that there are some optimizations for specific scenarios. This paper can help academic researchers consider what should be done in the future and industry personnel consider how to build efficient practical network systems.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.2200217</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Artificial intelligence ; Big Data ; Cloud computing ; Communications Engineering ; Computer centers ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Computing time ; Data processing ; Design optimization ; Differentiation ; Efficiency ; Electrical Engineering ; Electronics and Microelectronics ; Ethernet ; Instrumentation ; Internet ; Networks ; Optimization ; Review ; Supercomputers ; Technology ; Trends</subject><ispartof>Frontiers of information technology & electronic engineering, 2022-12, Vol.23 (12), p.1733-1746</ispartof><rights>Zhejiang University Press 2022</rights><rights>Zhejiang University Press 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-60206cb535c020b74d1efd9e9838938b3a6d37c4cc79566fd9153efd83a3c2233</citedby><cites>FETCH-LOGICAL-c339t-60206cb535c020b74d1efd9e9838938b3a6d37c4cc79566fd9153efd83a3c2233</cites><orcidid>0000-0001-9273-616X ; 0000-0001-9200-9018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zjdxxbc-e/zjdxxbc-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.2200217$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918725077?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Su, Jinshu</creatorcontrib><creatorcontrib>Zhao, Baokang</creatorcontrib><creatorcontrib>Dai, Yi</creatorcontrib><creatorcontrib>Cao, Jijun</creatorcontrib><creatorcontrib>Wei, Ziling</creatorcontrib><creatorcontrib>Zhao, Na</creatorcontrib><creatorcontrib>Song, Congxi</creatorcontrib><creatorcontrib>Liu, Yujing</creatorcontrib><creatorcontrib>Xia, Yusheng</creatorcontrib><title>Technology trends in large-scale high-efficiency network computing</title><title>Frontiers of information technology & electronic engineering</title><addtitle>Front Inform Technol Electron Eng</addtitle><description>Network technology is the basis for large-scale high-efficiency network computing, such as supercomputing, cloud computing, big data processing, and artificial intelligence computing. The network technologies of network computing systems in different fields not only learn from each other but also have targeted design and optimization. Considering it comprehensively, three development trends, i.e., integration, differentiation, and optimization, are summarized in this paper for network technologies in different fields. Integration reflects that there are no clear boundaries for network technologies in different fields, differentiation reflects that there are some unique solutions in different application fields or innovative solutions under new application requirements, and optimization reflects that there are some optimizations for specific scenarios. This paper can help academic researchers consider what should be done in the future and industry personnel consider how to build efficient practical network systems.</description><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>Communications Engineering</subject><subject>Computer centers</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Computing time</subject><subject>Data processing</subject><subject>Design optimization</subject><subject>Differentiation</subject><subject>Efficiency</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Ethernet</subject><subject>Instrumentation</subject><subject>Internet</subject><subject>Networks</subject><subject>Optimization</subject><subject>Review</subject><subject>Supercomputers</subject><subject>Technology</subject><subject>Trends</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpt0M9PwjAYgOHGaCJBjt6XeDMp9gdr16MSUBISL_PcdF03hqPFdgTwr7c4DBdP_ZI-_Zq8ANxjNMaM4qf5Ip_NxoQgRDC_AgOCRAoFoej6b8bZ5BaMQlgjhDDDgotsAF5yo1fWta4-Jp03tgxJY5NW-drAoFVrklVTr6CpqkY3xupjYk23d_4z0W6z3XWNre_ATaXaYEbncwg-5rN8-gaX76-L6fMSakpFBxkiiOkipamOU8EnJTZVKYzIaCZoVlDFSsr1RGsuUsbiFU5pFBlVVBNC6RA89nv3ylbK1nLtdt7GH-X3ujwcCi0NQYTgU4KIH3q89e5rZ0J30SSW4CRFnEcFe6W9C8GbSm59s1H-KDGSp6zyN6s8Z41-3PsQna2Nv2z9_8EPBwV31g</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Su, Jinshu</creator><creator>Zhao, Baokang</creator><creator>Dai, Yi</creator><creator>Cao, Jijun</creator><creator>Wei, Ziling</creator><creator>Zhao, Na</creator><creator>Song, Congxi</creator><creator>Liu, Yujing</creator><creator>Xia, Yusheng</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><general>School of Computer,National University of Defense Technology,Changsha 410073,China</general><general>Academy of Military Science,Beijing 100091,China%School of Computer,National University of Defense Technology,Changsha 410073,China%Academy of Military Science,Beijing 100091,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0001-9273-616X</orcidid><orcidid>https://orcid.org/0000-0001-9200-9018</orcidid></search><sort><creationdate>20221201</creationdate><title>Technology trends in large-scale high-efficiency network computing</title><author>Su, Jinshu ; Zhao, Baokang ; Dai, Yi ; Cao, Jijun ; Wei, Ziling ; Zhao, Na ; Song, Congxi ; Liu, Yujing ; Xia, Yusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-60206cb535c020b74d1efd9e9838938b3a6d37c4cc79566fd9153efd83a3c2233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>Communications Engineering</topic><topic>Computer centers</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Computing time</topic><topic>Data processing</topic><topic>Design optimization</topic><topic>Differentiation</topic><topic>Efficiency</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Ethernet</topic><topic>Instrumentation</topic><topic>Internet</topic><topic>Networks</topic><topic>Optimization</topic><topic>Review</topic><topic>Supercomputers</topic><topic>Technology</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Jinshu</creatorcontrib><creatorcontrib>Zhao, Baokang</creatorcontrib><creatorcontrib>Dai, Yi</creatorcontrib><creatorcontrib>Cao, Jijun</creatorcontrib><creatorcontrib>Wei, Ziling</creatorcontrib><creatorcontrib>Zhao, Na</creatorcontrib><creatorcontrib>Song, Congxi</creatorcontrib><creatorcontrib>Liu, Yujing</creatorcontrib><creatorcontrib>Xia, Yusheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Jinshu</au><au>Zhao, Baokang</au><au>Dai, Yi</au><au>Cao, Jijun</au><au>Wei, Ziling</au><au>Zhao, Na</au><au>Song, Congxi</au><au>Liu, Yujing</au><au>Xia, Yusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technology trends in large-scale high-efficiency network computing</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>Front Inform Technol Electron Eng</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>23</volume><issue>12</issue><spage>1733</spage><epage>1746</epage><pages>1733-1746</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>Network technology is the basis for large-scale high-efficiency network computing, such as supercomputing, cloud computing, big data processing, and artificial intelligence computing. The network technologies of network computing systems in different fields not only learn from each other but also have targeted design and optimization. Considering it comprehensively, three development trends, i.e., integration, differentiation, and optimization, are summarized in this paper for network technologies in different fields. Integration reflects that there are no clear boundaries for network technologies in different fields, differentiation reflects that there are some unique solutions in different application fields or innovative solutions under new application requirements, and optimization reflects that there are some optimizations for specific scenarios. This paper can help academic researchers consider what should be done in the future and industry personnel consider how to build efficient practical network systems.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.2200217</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9273-616X</orcidid><orcidid>https://orcid.org/0000-0001-9200-9018</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-9184 |
ispartof | Frontiers of information technology & electronic engineering, 2022-12, Vol.23 (12), p.1733-1746 |
issn | 2095-9184 2095-9230 |
language | eng |
recordid | cdi_wanfang_journals_zjdxxbc_e202212002 |
source | SpringerLink Journals; Alma/SFX Local Collection; ProQuest Central |
subjects | Artificial intelligence Big Data Cloud computing Communications Engineering Computer centers Computer Hardware Computer Science Computer Systems Organization and Communication Networks Computing time Data processing Design optimization Differentiation Efficiency Electrical Engineering Electronics and Microelectronics Ethernet Instrumentation Internet Networks Optimization Review Supercomputers Technology Trends |
title | Technology trends in large-scale high-efficiency network computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technology%20trends%20in%20large-scale%20high-efficiency%20network%20computing&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Su,%20Jinshu&rft.date=2022-12-01&rft.volume=23&rft.issue=12&rft.spage=1733&rft.epage=1746&rft.pages=1733-1746&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.2200217&rft_dat=%3Cwanfang_jour_proqu%3Ezjdxxbc_e202212002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918725077&rft_id=info:pmid/&rft_wanfj_id=zjdxxbc_e202212002&rfr_iscdi=true |