Efficient normalization for quantitative evaluation of the driving behavior using a gated auto-encoder
Driving behavior normalization is important for a fair evaluation of the driving style. The longitudinal control of a vehicle is investigated in this study. The normalization task can be considered as mapping of the driving behavior in a different environment to the uniform condition. Unlike the mod...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2022-03, Vol.23 (3), p.452-462 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Driving behavior normalization is important for a fair evaluation of the driving style. The longitudinal control of a vehicle is investigated in this study. The normalization task can be considered as mapping of the driving behavior in a different environment to the uniform condition. Unlike the model-based approach as in previous work, where a necessary driver model is employed to conduct the driving cycle test, the approach we propose directly normalizes the driving behavior using an auto-encoder (AE) when following a standard speed profile. To ensure a positive correlation between the vehicle speed and driving behavior, a gate constraint is imposed in between the encoder and decoder to form a gated AE (gAE). This approach is model-free and efficient. The proposed approach is tested for consistency with the model-based approach and for its applications to quantitative evaluation of the driving behavior and fuel consumption analysis. Simulations are conducted to verify the effectiveness of the proposed scheme. |
---|---|
ISSN: | 2095-9184 2095-9230 |
DOI: | 10.1631/FITEE.2000667 |