Microfluidic fuel cells integrating slanted groove micro-mixers to terminate growth of depletion boundary layer thickness

Because of potential high energy densities, microfluidic fuel cells can serve as micro-scale power sources. Because microfluidic fuel cells typically operate in the co-laminar flow regime to enable a membrane-less design, they generally suffer from severe mass transfer limitations with respect to di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Zhejiang University. A. Science 2023-10, Vol.24 (10), p.859-874
Hauptverfasser: Sun, Jinchi, Tian, Xiongwei, Liu, Zhangqing, Sun, Jie, Zheng, Menglian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 874
container_issue 10
container_start_page 859
container_title Journal of Zhejiang University. A. Science
container_volume 24
creator Sun, Jinchi
Tian, Xiongwei
Liu, Zhangqing
Sun, Jie
Zheng, Menglian
description Because of potential high energy densities, microfluidic fuel cells can serve as micro-scale power sources. Because microfluidic fuel cells typically operate in the co-laminar flow regime to enable a membrane-less design, they generally suffer from severe mass transfer limitations with respect to diffusion transport. To address this issue, a novel channel design that integrates slanted groove micro-mixers on the side walls of the channel is proposed. Numerical modeling on the design of groove micro-mixers and grooveless design demonstrates a mass transfer enhancement that has a 115% higher limiting current density and well-controlled convective mixing between the oxidant and the fuel streams with the use of slanted groove micro-mixers. Moreover, the growth of the thickness of the depletion boundary layer is found to be terminated within approximately 2 mm from the channel entrance, which is distinct from the constantly growing pattern in the grooveless design. In addition, a simplified mass transfer model capable of modeling the mass transfer prFocess with the presence of the transverse secondary flow is developed. Further, a dimensionless correlation is derived to analyze the effects of the design parameters on the limiting current density. The present theoretical study paves the way towards an optimal design of a microfluidic fuel cell integrating groove micro-mixers.
doi_str_mv 10.1631/jzus.A2300087
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zjdxxb_e202310003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zjdxxb_e202310003</wanfj_id><sourcerecordid>zjdxxb_e202310003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-134d7e99566024f89b957c9ec267f791d3ad7aa539f3251c178297c01031cab63</originalsourceid><addsrcrecordid>eNpt0ctPJCEQB-DORpP1ddw7iScPPfIYoDka42MTjZfdxFuHoYseZntgBFpn_OuXzmi8eAKSr4pU_arqF8EzIhi5XL2PaXZFGca4kT-qI9IIWhMp-UG5C8lqLvjzz-o4pRXGXGIhj6rdozMx2GF0nTPIjjAgA8OQkPMZ-qiz8z1Kgy6vDvUxhFdA66mkXrstxIRyQBni2nmdYQJveYmCRR1sBsgueLQIo-903KFB7yCivHTmn4eUTqtDq4cEZx_nSfX39ubP9X398HT3-_rqoTaMNbkmbN5JUIoLgencNmqhuDQKDBXSSkU6pjupNWfKMsqJIbKhShpMMCNGLwQ7qS72fd-0t9r37SqM0Zcf2_dVt90uWqCYMlKWxoo939tNDC8jpPyFaSMVbwhRk6r3qqwhpQi23US3LiO2BLdTEu2URPuZRPGzvU_F-R7iV9fvC_4DtrmN2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879581193</pqid></control><display><type>article</type><title>Microfluidic fuel cells integrating slanted groove micro-mixers to terminate growth of depletion boundary layer thickness</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Jinchi ; Tian, Xiongwei ; Liu, Zhangqing ; Sun, Jie ; Zheng, Menglian</creator><creatorcontrib>Sun, Jinchi ; Tian, Xiongwei ; Liu, Zhangqing ; Sun, Jie ; Zheng, Menglian</creatorcontrib><description>Because of potential high energy densities, microfluidic fuel cells can serve as micro-scale power sources. Because microfluidic fuel cells typically operate in the co-laminar flow regime to enable a membrane-less design, they generally suffer from severe mass transfer limitations with respect to diffusion transport. To address this issue, a novel channel design that integrates slanted groove micro-mixers on the side walls of the channel is proposed. Numerical modeling on the design of groove micro-mixers and grooveless design demonstrates a mass transfer enhancement that has a 115% higher limiting current density and well-controlled convective mixing between the oxidant and the fuel streams with the use of slanted groove micro-mixers. Moreover, the growth of the thickness of the depletion boundary layer is found to be terminated within approximately 2 mm from the channel entrance, which is distinct from the constantly growing pattern in the grooveless design. In addition, a simplified mass transfer model capable of modeling the mass transfer prFocess with the presence of the transverse secondary flow is developed. Further, a dimensionless correlation is derived to analyze the effects of the design parameters on the limiting current density. The present theoretical study paves the way towards an optimal design of a microfluidic fuel cell integrating groove micro-mixers.</description><identifier>ISSN: 1673-565X</identifier><identifier>EISSN: 1862-1775</identifier><identifier>DOI: 10.1631/jzus.A2300087</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Boundary layer thickness ; Boundary layers ; Civil Engineering ; Classical and Continuum Physics ; Constraining ; Current density ; Depletion ; Design ; Design parameters ; Engineering ; Fuel cells ; Fuel technology ; Grooves ; Industrial Chemistry/Chemical Engineering ; Laminar flow ; Mass transfer ; Mechanical Engineering ; Microfluidics ; Mixers ; Numerical models ; Oxidants ; Oxidizing agents ; Power sources ; Research Article ; Secondary flow ; Streams</subject><ispartof>Journal of Zhejiang University. A. Science, 2023-10, Vol.24 (10), p.859-874</ispartof><rights>Zhejiang University Press 2023</rights><rights>Zhejiang University Press 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-134d7e99566024f89b957c9ec267f791d3ad7aa539f3251c178297c01031cab63</citedby><cites>FETCH-LOGICAL-c338t-134d7e99566024f89b957c9ec267f791d3ad7aa539f3251c178297c01031cab63</cites><orcidid>0000-0002-4418-4361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zjdxxb-e/zjdxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/jzus.A2300087$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1631/jzus.A2300087$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sun, Jinchi</creatorcontrib><creatorcontrib>Tian, Xiongwei</creatorcontrib><creatorcontrib>Liu, Zhangqing</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Zheng, Menglian</creatorcontrib><title>Microfluidic fuel cells integrating slanted groove micro-mixers to terminate growth of depletion boundary layer thickness</title><title>Journal of Zhejiang University. A. Science</title><addtitle>J. Zhejiang Univ. Sci. A</addtitle><description>Because of potential high energy densities, microfluidic fuel cells can serve as micro-scale power sources. Because microfluidic fuel cells typically operate in the co-laminar flow regime to enable a membrane-less design, they generally suffer from severe mass transfer limitations with respect to diffusion transport. To address this issue, a novel channel design that integrates slanted groove micro-mixers on the side walls of the channel is proposed. Numerical modeling on the design of groove micro-mixers and grooveless design demonstrates a mass transfer enhancement that has a 115% higher limiting current density and well-controlled convective mixing between the oxidant and the fuel streams with the use of slanted groove micro-mixers. Moreover, the growth of the thickness of the depletion boundary layer is found to be terminated within approximately 2 mm from the channel entrance, which is distinct from the constantly growing pattern in the grooveless design. In addition, a simplified mass transfer model capable of modeling the mass transfer prFocess with the presence of the transverse secondary flow is developed. Further, a dimensionless correlation is derived to analyze the effects of the design parameters on the limiting current density. The present theoretical study paves the way towards an optimal design of a microfluidic fuel cell integrating groove micro-mixers.</description><subject>Boundary layer thickness</subject><subject>Boundary layers</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Constraining</subject><subject>Current density</subject><subject>Depletion</subject><subject>Design</subject><subject>Design parameters</subject><subject>Engineering</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Grooves</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Laminar flow</subject><subject>Mass transfer</subject><subject>Mechanical Engineering</subject><subject>Microfluidics</subject><subject>Mixers</subject><subject>Numerical models</subject><subject>Oxidants</subject><subject>Oxidizing agents</subject><subject>Power sources</subject><subject>Research Article</subject><subject>Secondary flow</subject><subject>Streams</subject><issn>1673-565X</issn><issn>1862-1775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpt0ctPJCEQB-DORpP1ddw7iScPPfIYoDka42MTjZfdxFuHoYseZntgBFpn_OuXzmi8eAKSr4pU_arqF8EzIhi5XL2PaXZFGca4kT-qI9IIWhMp-UG5C8lqLvjzz-o4pRXGXGIhj6rdozMx2GF0nTPIjjAgA8OQkPMZ-qiz8z1Kgy6vDvUxhFdA66mkXrstxIRyQBni2nmdYQJveYmCRR1sBsgueLQIo-903KFB7yCivHTmn4eUTqtDq4cEZx_nSfX39ubP9X398HT3-_rqoTaMNbkmbN5JUIoLgencNmqhuDQKDBXSSkU6pjupNWfKMsqJIbKhShpMMCNGLwQ7qS72fd-0t9r37SqM0Zcf2_dVt90uWqCYMlKWxoo939tNDC8jpPyFaSMVbwhRk6r3qqwhpQi23US3LiO2BLdTEu2URPuZRPGzvU_F-R7iV9fvC_4DtrmN2A</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Sun, Jinchi</creator><creator>Tian, Xiongwei</creator><creator>Liu, Zhangqing</creator><creator>Sun, Jie</creator><creator>Zheng, Menglian</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><general>State Key Laboratory of Clean Energy Utilization,Hangzhou 310027,China</general><general>Institute of Thermal Science and Power Systems,College of Energy Engineering,Zhejiang University,Hangzhou 310027,China%Institute of Energy and Environment Engineering,NingboTech University,Ningbo 315100,China%Institute of Thermal Science and Power Systems,College of Energy Engineering,Zhejiang University,Hangzhou 310027,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0002-4418-4361</orcidid></search><sort><creationdate>20231001</creationdate><title>Microfluidic fuel cells integrating slanted groove micro-mixers to terminate growth of depletion boundary layer thickness</title><author>Sun, Jinchi ; Tian, Xiongwei ; Liu, Zhangqing ; Sun, Jie ; Zheng, Menglian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-134d7e99566024f89b957c9ec267f791d3ad7aa539f3251c178297c01031cab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary layer thickness</topic><topic>Boundary layers</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Constraining</topic><topic>Current density</topic><topic>Depletion</topic><topic>Design</topic><topic>Design parameters</topic><topic>Engineering</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Grooves</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Laminar flow</topic><topic>Mass transfer</topic><topic>Mechanical Engineering</topic><topic>Microfluidics</topic><topic>Mixers</topic><topic>Numerical models</topic><topic>Oxidants</topic><topic>Oxidizing agents</topic><topic>Power sources</topic><topic>Research Article</topic><topic>Secondary flow</topic><topic>Streams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jinchi</creatorcontrib><creatorcontrib>Tian, Xiongwei</creatorcontrib><creatorcontrib>Liu, Zhangqing</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Zheng, Menglian</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Zhejiang University. A. Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jinchi</au><au>Tian, Xiongwei</au><au>Liu, Zhangqing</au><au>Sun, Jie</au><au>Zheng, Menglian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic fuel cells integrating slanted groove micro-mixers to terminate growth of depletion boundary layer thickness</atitle><jtitle>Journal of Zhejiang University. A. Science</jtitle><stitle>J. Zhejiang Univ. Sci. A</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>24</volume><issue>10</issue><spage>859</spage><epage>874</epage><pages>859-874</pages><issn>1673-565X</issn><eissn>1862-1775</eissn><abstract>Because of potential high energy densities, microfluidic fuel cells can serve as micro-scale power sources. Because microfluidic fuel cells typically operate in the co-laminar flow regime to enable a membrane-less design, they generally suffer from severe mass transfer limitations with respect to diffusion transport. To address this issue, a novel channel design that integrates slanted groove micro-mixers on the side walls of the channel is proposed. Numerical modeling on the design of groove micro-mixers and grooveless design demonstrates a mass transfer enhancement that has a 115% higher limiting current density and well-controlled convective mixing between the oxidant and the fuel streams with the use of slanted groove micro-mixers. Moreover, the growth of the thickness of the depletion boundary layer is found to be terminated within approximately 2 mm from the channel entrance, which is distinct from the constantly growing pattern in the grooveless design. In addition, a simplified mass transfer model capable of modeling the mass transfer prFocess with the presence of the transverse secondary flow is developed. Further, a dimensionless correlation is derived to analyze the effects of the design parameters on the limiting current density. The present theoretical study paves the way towards an optimal design of a microfluidic fuel cell integrating groove micro-mixers.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/jzus.A2300087</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4418-4361</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1673-565X
ispartof Journal of Zhejiang University. A. Science, 2023-10, Vol.24 (10), p.859-874
issn 1673-565X
1862-1775
language eng
recordid cdi_wanfang_journals_zjdxxb_e202310003
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Boundary layer thickness
Boundary layers
Civil Engineering
Classical and Continuum Physics
Constraining
Current density
Depletion
Design
Design parameters
Engineering
Fuel cells
Fuel technology
Grooves
Industrial Chemistry/Chemical Engineering
Laminar flow
Mass transfer
Mechanical Engineering
Microfluidics
Mixers
Numerical models
Oxidants
Oxidizing agents
Power sources
Research Article
Secondary flow
Streams
title Microfluidic fuel cells integrating slanted groove micro-mixers to terminate growth of depletion boundary layer thickness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20fuel%20cells%20integrating%20slanted%20groove%20micro-mixers%20to%20terminate%20growth%20of%20depletion%20boundary%20layer%20thickness&rft.jtitle=Journal%20of%20Zhejiang%20University.%20A.%20Science&rft.au=Sun,%20Jinchi&rft.date=2023-10-01&rft.volume=24&rft.issue=10&rft.spage=859&rft.epage=874&rft.pages=859-874&rft.issn=1673-565X&rft.eissn=1862-1775&rft_id=info:doi/10.1631/jzus.A2300087&rft_dat=%3Cwanfang_jour_proqu%3Ezjdxxb_e202310003%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879581193&rft_id=info:pmid/&rft_wanfj_id=zjdxxb_e202310003&rfr_iscdi=true