A novel time-span input neural network for accurate municipal solid waste incineration boiler steam temperature prediction

A novel time-span input neural network was developed to accurately predict the trend of the main steam temperature of a 750-t/d waste incineration boiler. Its historical operating data were used to retrieve sensitive parameters for the boiler output steam temperature by correlation analysis. Then, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Zhejiang University. A. Science 2021-10, Vol.22 (10), p.777-791
Hauptverfasser: Hu, Qin-xuan, Long, Ji-sheng, Wang, Shou-kang, He, Jun-jie, Bai, Li, Du, Hai-liang, Huang, Qun-xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 791
container_issue 10
container_start_page 777
container_title Journal of Zhejiang University. A. Science
container_volume 22
creator Hu, Qin-xuan
Long, Ji-sheng
Wang, Shou-kang
He, Jun-jie
Bai, Li
Du, Hai-liang
Huang, Qun-xing
description A novel time-span input neural network was developed to accurately predict the trend of the main steam temperature of a 750-t/d waste incineration boiler. Its historical operating data were used to retrieve sensitive parameters for the boiler output steam temperature by correlation analysis. Then, the 15 most sensitive parameters with specified time spans were selected as neural network inputs. An external testing set was introduced to objectively evaluate the neural network prediction capability. The results show that, compared with the traditional prediction method, the time-span input framework model can achieve better prediction performance and has a greater capability for generalization. The maximum average prediction error can be controlled below 0.2 °C and 1.5 °C in the next 60 s and 5 min, respectively. In addition, setting a reasonable terminal training threshold can effectively avoid overfitting. An importance analysis of the parameters indicates that the main steam temperature and the average temperature around the high-temperature superheater are the two most important variables of the input parameters; the former affects the overall prediction and the latter affects the long-term prediction performance.
doi_str_mv 10.1631/jzus.A2000529
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zjdxxb_e202110003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zjdxxb_e202110003</wanfj_id><sourcerecordid>zjdxxb_e202110003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-92444cb2bb77a202af267126d4f717ec8903034549ddbc47e634ee68a2988bab3</originalsourceid><addsrcrecordid>eNpt0c9LwzAUB_AiCs7p0XvAk4fO_GiS9jiGv2DgRcFbSdPXkdkmNWnd3F9vxpRdPL3w3icvkG-SXBM8I4KRu_VuDLM5xRhzWpwkE5ILmhIp-Wk8C8lSLvj7eXIRwjoSiYWcJLs5su4LWjSYDtLQK4uM7ccBWRi9amMZNs5_oMZ5pLSOvQFQN1qjTR_HwbWmRhsVYtdYbSxEYJxFlTMteBT7qkMDdP1-MHpAvYfa6L25TM4a1Qa4-q3T5O3h_nXxlC5fHp8X82WqGcuHtKBZlumKVpWUimKqGiokoaLOGkkk6LzADLOMZ0VdVzqTIFgGIHJFizyvVMWmye1h70bZRtlVuXajt_HFcreut9uqhLiVkPhtLNqbg-29-xwhDEdMec4xLzinUaUHpb0LwUNT9t50yn-XBJf7KMp9FOVfFNHPDj5EZ1fgj1v_v_ADOlOOaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585059552</pqid></control><display><type>article</type><title>A novel time-span input neural network for accurate municipal solid waste incineration boiler steam temperature prediction</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Hu, Qin-xuan ; Long, Ji-sheng ; Wang, Shou-kang ; He, Jun-jie ; Bai, Li ; Du, Hai-liang ; Huang, Qun-xing</creator><creatorcontrib>Hu, Qin-xuan ; Long, Ji-sheng ; Wang, Shou-kang ; He, Jun-jie ; Bai, Li ; Du, Hai-liang ; Huang, Qun-xing</creatorcontrib><description>A novel time-span input neural network was developed to accurately predict the trend of the main steam temperature of a 750-t/d waste incineration boiler. Its historical operating data were used to retrieve sensitive parameters for the boiler output steam temperature by correlation analysis. Then, the 15 most sensitive parameters with specified time spans were selected as neural network inputs. An external testing set was introduced to objectively evaluate the neural network prediction capability. The results show that, compared with the traditional prediction method, the time-span input framework model can achieve better prediction performance and has a greater capability for generalization. The maximum average prediction error can be controlled below 0.2 °C and 1.5 °C in the next 60 s and 5 min, respectively. In addition, setting a reasonable terminal training threshold can effectively avoid overfitting. An importance analysis of the parameters indicates that the main steam temperature and the average temperature around the high-temperature superheater are the two most important variables of the input parameters; the former affects the overall prediction and the latter affects the long-term prediction performance.</description><identifier>ISSN: 1673-565X</identifier><identifier>EISSN: 1862-1775</identifier><identifier>DOI: 10.1631/jzus.A2000529</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Boilers ; Civil Engineering ; Classical and Continuum Physics ; Combustion ; Correlation analysis ; Engineering ; High temperature ; Incineration ; Industrial Chemistry/Chemical Engineering ; Mechanical Engineering ; Municipal solid waste ; Municipal waste management ; Neural networks ; Parameter sensitivity ; Performance prediction ; Predictions ; Solid waste management ; Steam ; Waste disposal</subject><ispartof>Journal of Zhejiang University. A. Science, 2021-10, Vol.22 (10), p.777-791</ispartof><rights>Zhejiang University Press 2021</rights><rights>Zhejiang University Press 2021.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-92444cb2bb77a202af267126d4f717ec8903034549ddbc47e634ee68a2988bab3</citedby><cites>FETCH-LOGICAL-c338t-92444cb2bb77a202af267126d4f717ec8903034549ddbc47e634ee68a2988bab3</cites><orcidid>0000-0003-1557-3955 ; 0000-0001-5586-7400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zjdxxb-e/zjdxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/jzus.A2000529$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1631/jzus.A2000529$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hu, Qin-xuan</creatorcontrib><creatorcontrib>Long, Ji-sheng</creatorcontrib><creatorcontrib>Wang, Shou-kang</creatorcontrib><creatorcontrib>He, Jun-jie</creatorcontrib><creatorcontrib>Bai, Li</creatorcontrib><creatorcontrib>Du, Hai-liang</creatorcontrib><creatorcontrib>Huang, Qun-xing</creatorcontrib><title>A novel time-span input neural network for accurate municipal solid waste incineration boiler steam temperature prediction</title><title>Journal of Zhejiang University. A. Science</title><addtitle>J. Zhejiang Univ. Sci. A</addtitle><description>A novel time-span input neural network was developed to accurately predict the trend of the main steam temperature of a 750-t/d waste incineration boiler. Its historical operating data were used to retrieve sensitive parameters for the boiler output steam temperature by correlation analysis. Then, the 15 most sensitive parameters with specified time spans were selected as neural network inputs. An external testing set was introduced to objectively evaluate the neural network prediction capability. The results show that, compared with the traditional prediction method, the time-span input framework model can achieve better prediction performance and has a greater capability for generalization. The maximum average prediction error can be controlled below 0.2 °C and 1.5 °C in the next 60 s and 5 min, respectively. In addition, setting a reasonable terminal training threshold can effectively avoid overfitting. An importance analysis of the parameters indicates that the main steam temperature and the average temperature around the high-temperature superheater are the two most important variables of the input parameters; the former affects the overall prediction and the latter affects the long-term prediction performance.</description><subject>Boilers</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Combustion</subject><subject>Correlation analysis</subject><subject>Engineering</subject><subject>High temperature</subject><subject>Incineration</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mechanical Engineering</subject><subject>Municipal solid waste</subject><subject>Municipal waste management</subject><subject>Neural networks</subject><subject>Parameter sensitivity</subject><subject>Performance prediction</subject><subject>Predictions</subject><subject>Solid waste management</subject><subject>Steam</subject><subject>Waste disposal</subject><issn>1673-565X</issn><issn>1862-1775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpt0c9LwzAUB_AiCs7p0XvAk4fO_GiS9jiGv2DgRcFbSdPXkdkmNWnd3F9vxpRdPL3w3icvkG-SXBM8I4KRu_VuDLM5xRhzWpwkE5ILmhIp-Wk8C8lSLvj7eXIRwjoSiYWcJLs5su4LWjSYDtLQK4uM7ccBWRi9amMZNs5_oMZ5pLSOvQFQN1qjTR_HwbWmRhsVYtdYbSxEYJxFlTMteBT7qkMDdP1-MHpAvYfa6L25TM4a1Qa4-q3T5O3h_nXxlC5fHp8X82WqGcuHtKBZlumKVpWUimKqGiokoaLOGkkk6LzADLOMZ0VdVzqTIFgGIHJFizyvVMWmye1h70bZRtlVuXajt_HFcreut9uqhLiVkPhtLNqbg-29-xwhDEdMec4xLzinUaUHpb0LwUNT9t50yn-XBJf7KMp9FOVfFNHPDj5EZ1fgj1v_v_ADOlOOaQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Hu, Qin-xuan</creator><creator>Long, Ji-sheng</creator><creator>Wang, Shou-kang</creator><creator>He, Jun-jie</creator><creator>Bai, Li</creator><creator>Du, Hai-liang</creator><creator>Huang, Qun-xing</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><general>State Key Laboratory of Clean Energy Utilization,Institute of Thermal Engineering,Zhejiang University,Hangzhou 310027,China%Shanghai SUS Environment Co.Ltd.,Shanghai 201703,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0003-1557-3955</orcidid><orcidid>https://orcid.org/0000-0001-5586-7400</orcidid></search><sort><creationdate>20211001</creationdate><title>A novel time-span input neural network for accurate municipal solid waste incineration boiler steam temperature prediction</title><author>Hu, Qin-xuan ; Long, Ji-sheng ; Wang, Shou-kang ; He, Jun-jie ; Bai, Li ; Du, Hai-liang ; Huang, Qun-xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-92444cb2bb77a202af267126d4f717ec8903034549ddbc47e634ee68a2988bab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boilers</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Combustion</topic><topic>Correlation analysis</topic><topic>Engineering</topic><topic>High temperature</topic><topic>Incineration</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mechanical Engineering</topic><topic>Municipal solid waste</topic><topic>Municipal waste management</topic><topic>Neural networks</topic><topic>Parameter sensitivity</topic><topic>Performance prediction</topic><topic>Predictions</topic><topic>Solid waste management</topic><topic>Steam</topic><topic>Waste disposal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Qin-xuan</creatorcontrib><creatorcontrib>Long, Ji-sheng</creatorcontrib><creatorcontrib>Wang, Shou-kang</creatorcontrib><creatorcontrib>He, Jun-jie</creatorcontrib><creatorcontrib>Bai, Li</creatorcontrib><creatorcontrib>Du, Hai-liang</creatorcontrib><creatorcontrib>Huang, Qun-xing</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Zhejiang University. A. Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Qin-xuan</au><au>Long, Ji-sheng</au><au>Wang, Shou-kang</au><au>He, Jun-jie</au><au>Bai, Li</au><au>Du, Hai-liang</au><au>Huang, Qun-xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel time-span input neural network for accurate municipal solid waste incineration boiler steam temperature prediction</atitle><jtitle>Journal of Zhejiang University. A. Science</jtitle><stitle>J. Zhejiang Univ. Sci. A</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>22</volume><issue>10</issue><spage>777</spage><epage>791</epage><pages>777-791</pages><issn>1673-565X</issn><eissn>1862-1775</eissn><abstract>A novel time-span input neural network was developed to accurately predict the trend of the main steam temperature of a 750-t/d waste incineration boiler. Its historical operating data were used to retrieve sensitive parameters for the boiler output steam temperature by correlation analysis. Then, the 15 most sensitive parameters with specified time spans were selected as neural network inputs. An external testing set was introduced to objectively evaluate the neural network prediction capability. The results show that, compared with the traditional prediction method, the time-span input framework model can achieve better prediction performance and has a greater capability for generalization. The maximum average prediction error can be controlled below 0.2 °C and 1.5 °C in the next 60 s and 5 min, respectively. In addition, setting a reasonable terminal training threshold can effectively avoid overfitting. An importance analysis of the parameters indicates that the main steam temperature and the average temperature around the high-temperature superheater are the two most important variables of the input parameters; the former affects the overall prediction and the latter affects the long-term prediction performance.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/jzus.A2000529</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1557-3955</orcidid><orcidid>https://orcid.org/0000-0001-5586-7400</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1673-565X
ispartof Journal of Zhejiang University. A. Science, 2021-10, Vol.22 (10), p.777-791
issn 1673-565X
1862-1775
language eng
recordid cdi_wanfang_journals_zjdxxb_e202110003
source SpringerNature Journals; Alma/SFX Local Collection
subjects Boilers
Civil Engineering
Classical and Continuum Physics
Combustion
Correlation analysis
Engineering
High temperature
Incineration
Industrial Chemistry/Chemical Engineering
Mechanical Engineering
Municipal solid waste
Municipal waste management
Neural networks
Parameter sensitivity
Performance prediction
Predictions
Solid waste management
Steam
Waste disposal
title A novel time-span input neural network for accurate municipal solid waste incineration boiler steam temperature prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20time-span%20input%20neural%20network%20for%20accurate%20municipal%20solid%20waste%20incineration%20boiler%20steam%20temperature%20prediction&rft.jtitle=Journal%20of%20Zhejiang%20University.%20A.%20Science&rft.au=Hu,%20Qin-xuan&rft.date=2021-10-01&rft.volume=22&rft.issue=10&rft.spage=777&rft.epage=791&rft.pages=777-791&rft.issn=1673-565X&rft.eissn=1862-1775&rft_id=info:doi/10.1631/jzus.A2000529&rft_dat=%3Cwanfang_jour_proqu%3Ezjdxxb_e202110003%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585059552&rft_id=info:pmid/&rft_wanfj_id=zjdxxb_e202110003&rfr_iscdi=true