An efficient method for tracing planar implicit curves

This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new fimction F(x, y)=0 where the same curve withf(x, y)=0 is defined. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Zhejiang University. A. Science 2006-07, Vol.7 (7), p.1115-1123
Hauptverfasser: Yu, Zheng-sheng, Cai, Yao-zhi, Oh, Min-jae, Kim, Tae-wan, Peng, Qun-sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1123
container_issue 7
container_start_page 1115
container_title Journal of Zhejiang University. A. Science
container_volume 7
creator Yu, Zheng-sheng
Cai, Yao-zhi
Oh, Min-jae
Kim, Tae-wan
Peng, Qun-sheng
description This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new fimction F(x, y)=0 where the same curve withf(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)〉0 and F(x, y)〈0 alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has the following advantages: (1) it can plot Co planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per moving step, while most existing similar methods cost more evaluations of the function.
doi_str_mv 10.1631/jzus.2006.A1115
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zjdxxb_e200607003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>22256154</cqvip_id><wanfj_id>zjdxxb_e200607003</wanfj_id><sourcerecordid>zjdxxb_e200607003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2483-ba9d8b7e30e88f2eebfa5af89910a795481f7dfe193ac11b7ccfde86b405f01e3</originalsourceid><addsrcrecordid>eNotkD1PwzAQhiMEEqUws0YMSAxpfU78kbGq-JIqsYDEZjnOuU3IV-0ESn89Ke10Nzzve7onCG6BzIDHMC_3g59RQvhsAQDsLJiA5DQCIdj5uHMRR4yzz8vgyvuSECYIF5OAL5oQrS1MgU0f1thv2jy0rQt7p03RrMOu0o12YVF31Qj1oRncN_rr4MLqyuPNaU6Dj6fH9-VLtHp7fl0uVpGhiYyjTKe5zATGBKW0FDGzmmkr0xSIFilLJFiRW4Q01gYgE8bYHCXPEsIsAYynwcOx90c3VjdrVbaDa8aLal_mu12m8PAxEYTEI3t_ZDvXbgf0vaoLb7AaH8B28IqmDFIq5QjOj6BxrfcOrepcUWv3q4Cog0t1cKkOzerf5Zi4OyU2bbPejl5Ups2XLSpUlFLGgSXxH28ac7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29519288</pqid></control><display><type>article</type><title>An efficient method for tracing planar implicit curves</title><source>SpringerLink</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Yu, Zheng-sheng ; Cai, Yao-zhi ; Oh, Min-jae ; Kim, Tae-wan ; Peng, Qun-sheng</creator><creatorcontrib>Yu, Zheng-sheng ; Cai, Yao-zhi ; Oh, Min-jae ; Kim, Tae-wan ; Peng, Qun-sheng</creatorcontrib><description>This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new fimction F(x, y)=0 where the same curve withf(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)〉0 and F(x, y)〈0 alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has the following advantages: (1) it can plot Co planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per moving step, while most existing similar methods cost more evaluations of the function.</description><identifier>ISSN: 1673-565X</identifier><identifier>ISSN: 1009-3095</identifier><identifier>EISSN: 1862-1775</identifier><identifier>DOI: 10.1631/jzus.2006.A1115</identifier><language>eng</language><publisher>Computer Science School, Hangzhou Dianzi University, Hangzhou 310018, China</publisher><subject>几何建模 ; 曲线跟踪 ; 计算机 ; 连续方法</subject><ispartof>Journal of Zhejiang University. A. Science, 2006-07, Vol.7 (7), p.1115-1123</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2483-ba9d8b7e30e88f2eebfa5af89910a795481f7dfe193ac11b7ccfde86b405f01e3</citedby><cites>FETCH-LOGICAL-c2483-ba9d8b7e30e88f2eebfa5af89910a795481f7dfe193ac11b7ccfde86b405f01e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/88140X/88140X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yu, Zheng-sheng</creatorcontrib><creatorcontrib>Cai, Yao-zhi</creatorcontrib><creatorcontrib>Oh, Min-jae</creatorcontrib><creatorcontrib>Kim, Tae-wan</creatorcontrib><creatorcontrib>Peng, Qun-sheng</creatorcontrib><title>An efficient method for tracing planar implicit curves</title><title>Journal of Zhejiang University. A. Science</title><addtitle>Journal of Zhejiang University Science</addtitle><description>This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new fimction F(x, y)=0 where the same curve withf(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)〉0 and F(x, y)〈0 alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has the following advantages: (1) it can plot Co planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per moving step, while most existing similar methods cost more evaluations of the function.</description><subject>几何建模</subject><subject>曲线跟踪</subject><subject>计算机</subject><subject>连续方法</subject><issn>1673-565X</issn><issn>1009-3095</issn><issn>1862-1775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAQhiMEEqUws0YMSAxpfU78kbGq-JIqsYDEZjnOuU3IV-0ESn89Ke10Nzzve7onCG6BzIDHMC_3g59RQvhsAQDsLJiA5DQCIdj5uHMRR4yzz8vgyvuSECYIF5OAL5oQrS1MgU0f1thv2jy0rQt7p03RrMOu0o12YVF31Qj1oRncN_rr4MLqyuPNaU6Dj6fH9-VLtHp7fl0uVpGhiYyjTKe5zATGBKW0FDGzmmkr0xSIFilLJFiRW4Q01gYgE8bYHCXPEsIsAYynwcOx90c3VjdrVbaDa8aLal_mu12m8PAxEYTEI3t_ZDvXbgf0vaoLb7AaH8B28IqmDFIq5QjOj6BxrfcOrepcUWv3q4Cog0t1cKkOzerf5Zi4OyU2bbPejl5Ups2XLSpUlFLGgSXxH28ac7s</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Yu, Zheng-sheng</creator><creator>Cai, Yao-zhi</creator><creator>Oh, Min-jae</creator><creator>Kim, Tae-wan</creator><creator>Peng, Qun-sheng</creator><general>Computer Science School, Hangzhou Dianzi University, Hangzhou 310018, China</general><general>Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul 151-744-744, Korea%Applied Mathematics Department, Zhejiang University, Hangzhou 310027, China%Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul 151-744, Korea%State Key Laboratory of CAD &amp; CG, Zhejiang University, Hangzhou 310027, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>200607</creationdate><title>An efficient method for tracing planar implicit curves</title><author>Yu, Zheng-sheng ; Cai, Yao-zhi ; Oh, Min-jae ; Kim, Tae-wan ; Peng, Qun-sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2483-ba9d8b7e30e88f2eebfa5af89910a795481f7dfe193ac11b7ccfde86b405f01e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>几何建模</topic><topic>曲线跟踪</topic><topic>计算机</topic><topic>连续方法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zheng-sheng</creatorcontrib><creatorcontrib>Cai, Yao-zhi</creatorcontrib><creatorcontrib>Oh, Min-jae</creatorcontrib><creatorcontrib>Kim, Tae-wan</creatorcontrib><creatorcontrib>Peng, Qun-sheng</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Zhejiang University. A. Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zheng-sheng</au><au>Cai, Yao-zhi</au><au>Oh, Min-jae</au><au>Kim, Tae-wan</au><au>Peng, Qun-sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient method for tracing planar implicit curves</atitle><jtitle>Journal of Zhejiang University. A. Science</jtitle><addtitle>Journal of Zhejiang University Science</addtitle><date>2006-07</date><risdate>2006</risdate><volume>7</volume><issue>7</issue><spage>1115</spage><epage>1123</epage><pages>1115-1123</pages><issn>1673-565X</issn><issn>1009-3095</issn><eissn>1862-1775</eissn><abstract>This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new fimction F(x, y)=0 where the same curve withf(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)〉0 and F(x, y)〈0 alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has the following advantages: (1) it can plot Co planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per moving step, while most existing similar methods cost more evaluations of the function.</abstract><pub>Computer Science School, Hangzhou Dianzi University, Hangzhou 310018, China</pub><doi>10.1631/jzus.2006.A1115</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1673-565X
ispartof Journal of Zhejiang University. A. Science, 2006-07, Vol.7 (7), p.1115-1123
issn 1673-565X
1009-3095
1862-1775
language eng
recordid cdi_wanfang_journals_zjdxxb_e200607003
source SpringerLink; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects 几何建模
曲线跟踪
计算机
连续方法
title An efficient method for tracing planar implicit curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20method%20for%20tracing%20planar%20implicit%20curves&rft.jtitle=Journal%20of%20Zhejiang%20University.%20A.%20Science&rft.au=Yu,%20Zheng-sheng&rft.date=2006-07&rft.volume=7&rft.issue=7&rft.spage=1115&rft.epage=1123&rft.pages=1115-1123&rft.issn=1673-565X&rft.eissn=1862-1775&rft_id=info:doi/10.1631/jzus.2006.A1115&rft_dat=%3Cwanfang_jour_proqu%3Ezjdxxb_e200607003%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29519288&rft_id=info:pmid/&rft_cqvip_id=22256154&rft_wanfj_id=zjdxxb_e200607003&rfr_iscdi=true