半固态加工Ti?Cu合金的显微组织和力学行为
研究触变成形Ti?Cu合金的力学性能.Ti?Cu(25%,27%,29%Cu,质量分数)锭的制备流程为:先进行电弧熔炼,再在950℃均匀化处理24 h,然后在900℃热锻,最后在1035℃热处理300 s后以8 mm/s的速度触变成形.结果显示,触变成形合金表现出良好的力学强度,但其在拉伸载荷下的塑性一般,在压缩载荷下的塑性尚可.随着Cu含量的增加,包晶Ti2Cu相(转变液相区)的体积分数增加,与α+Ti2Cu相区(转变固相区)相比,其力学强度和塑性更低,导致合金的力学强度和塑性降低.这些结果表明,Ti?Cu合金的力学性能和半固态加工性之间的平衡主要取决于Cu含量....
Gespeichert in:
Veröffentlicht in: | 中国有色金属学报(英文版) 2022, Vol.32 (11), p.3578-3586 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3586 |
---|---|
container_issue | 11 |
container_start_page | 3578 |
container_title | 中国有色金属学报(英文版) |
container_volume | 32 |
creator | Kaio NIITSU CAMPO Caio Chaussê de FREITAS éder Sócrates Najar LOPES Suk-Chun MOON Rian DIPPENAAR Rubens CARAM |
description | 研究触变成形Ti?Cu合金的力学性能.Ti?Cu(25%,27%,29%Cu,质量分数)锭的制备流程为:先进行电弧熔炼,再在950℃均匀化处理24 h,然后在900℃热锻,最后在1035℃热处理300 s后以8 mm/s的速度触变成形.结果显示,触变成形合金表现出良好的力学强度,但其在拉伸载荷下的塑性一般,在压缩载荷下的塑性尚可.随着Cu含量的增加,包晶Ti2Cu相(转变液相区)的体积分数增加,与α+Ti2Cu相区(转变固相区)相比,其力学强度和塑性更低,导致合金的力学强度和塑性降低.这些结果表明,Ti?Cu合金的力学性能和半固态加工性之间的平衡主要取决于Cu含量. |
doi_str_mv | 10.1016/S1003-6326(22)66040-0 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_zgysjsxb_e202211006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgysjsxb_e202211006</wanfj_id><sourcerecordid>zgysjsxb_e202211006</sourcerecordid><originalsourceid>FETCH-wanfang_journals_zgysjsxb_e2022110063</originalsourceid><addsrcrecordid>eNpjYJA1NNAzNDA00w82NDAw1jUzNjLTMDLSNDMzMDHQNWBh4IQLczDwFhdnJhkYGpqYGlgaGnIyWDzt7Xo6e9ezhsanXQuebl8akmnvXPp0QsfL9onPZ7U8m7Hv6b51z3e3PN_d_nRSz9Ou2U_XLnuxsOfJjl08DKxpiTnFqbxQmptB2801xNlDtzwxLy0xLz0-K7-0KA8oE1-VXlmcVVyRFJ9qZGBkZAh0jJkxaaoBz9FTeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>半固态加工Ti?Cu合金的显微组织和力学行为</title><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>Kaio NIITSU CAMPO ; Caio Chaussê de FREITAS ; éder Sócrates Najar LOPES ; Suk-Chun MOON ; Rian DIPPENAAR ; Rubens CARAM</creator><creatorcontrib>Kaio NIITSU CAMPO ; Caio Chaussê de FREITAS ; éder Sócrates Najar LOPES ; Suk-Chun MOON ; Rian DIPPENAAR ; Rubens CARAM</creatorcontrib><description>研究触变成形Ti?Cu合金的力学性能.Ti?Cu(25%,27%,29%Cu,质量分数)锭的制备流程为:先进行电弧熔炼,再在950℃均匀化处理24 h,然后在900℃热锻,最后在1035℃热处理300 s后以8 mm/s的速度触变成形.结果显示,触变成形合金表现出良好的力学强度,但其在拉伸载荷下的塑性一般,在压缩载荷下的塑性尚可.随着Cu含量的增加,包晶Ti2Cu相(转变液相区)的体积分数增加,与α+Ti2Cu相区(转变固相区)相比,其力学强度和塑性更低,导致合金的力学强度和塑性降低.这些结果表明,Ti?Cu合金的力学性能和半固态加工性之间的平衡主要取决于Cu含量.</description><identifier>ISSN: 1003-6326</identifier><identifier>DOI: 10.1016/S1003-6326(22)66040-0</identifier><language>chi</language><publisher>School of Mechanical Engineering, University of Campinas, Campinas, SP, Brazil%School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia%School of Mechanical Engineering,University of Campinas,Campinas,SP,Brazil</publisher><ispartof>中国有色金属学报(英文版), 2022, Vol.32 (11), p.3578-3586</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgysjsxb-e/zgysjsxb-e.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Kaio NIITSU CAMPO</creatorcontrib><creatorcontrib>Caio Chaussê de FREITAS</creatorcontrib><creatorcontrib>éder Sócrates Najar LOPES</creatorcontrib><creatorcontrib>Suk-Chun MOON</creatorcontrib><creatorcontrib>Rian DIPPENAAR</creatorcontrib><creatorcontrib>Rubens CARAM</creatorcontrib><title>半固态加工Ti?Cu合金的显微组织和力学行为</title><title>中国有色金属学报(英文版)</title><description>研究触变成形Ti?Cu合金的力学性能.Ti?Cu(25%,27%,29%Cu,质量分数)锭的制备流程为:先进行电弧熔炼,再在950℃均匀化处理24 h,然后在900℃热锻,最后在1035℃热处理300 s后以8 mm/s的速度触变成形.结果显示,触变成形合金表现出良好的力学强度,但其在拉伸载荷下的塑性一般,在压缩载荷下的塑性尚可.随着Cu含量的增加,包晶Ti2Cu相(转变液相区)的体积分数增加,与α+Ti2Cu相区(转变固相区)相比,其力学强度和塑性更低,导致合金的力学强度和塑性降低.这些结果表明,Ti?Cu合金的力学性能和半固态加工性之间的平衡主要取决于Cu含量.</description><issn>1003-6326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpjYJA1NNAzNDA00w82NDAw1jUzNjLTMDLSNDMzMDHQNWBh4IQLczDwFhdnJhkYGpqYGlgaGnIyWDzt7Xo6e9ezhsanXQuebl8akmnvXPp0QsfL9onPZ7U8m7Hv6b51z3e3PN_d_nRSz9Ou2U_XLnuxsOfJjl08DKxpiTnFqbxQmptB2801xNlDtzwxLy0xLz0-K7-0KA8oE1-VXlmcVVyRFJ9qZGBkZAh0jJkxaaoBz9FTeA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kaio NIITSU CAMPO</creator><creator>Caio Chaussê de FREITAS</creator><creator>éder Sócrates Najar LOPES</creator><creator>Suk-Chun MOON</creator><creator>Rian DIPPENAAR</creator><creator>Rubens CARAM</creator><general>School of Mechanical Engineering, University of Campinas, Campinas, SP, Brazil%School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia%School of Mechanical Engineering,University of Campinas,Campinas,SP,Brazil</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2022</creationdate><title>半固态加工Ti?Cu合金的显微组织和力学行为</title><author>Kaio NIITSU CAMPO ; Caio Chaussê de FREITAS ; éder Sócrates Najar LOPES ; Suk-Chun MOON ; Rian DIPPENAAR ; Rubens CARAM</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wanfang_journals_zgysjsxb_e2022110063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaio NIITSU CAMPO</creatorcontrib><creatorcontrib>Caio Chaussê de FREITAS</creatorcontrib><creatorcontrib>éder Sócrates Najar LOPES</creatorcontrib><creatorcontrib>Suk-Chun MOON</creatorcontrib><creatorcontrib>Rian DIPPENAAR</creatorcontrib><creatorcontrib>Rubens CARAM</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>中国有色金属学报(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaio NIITSU CAMPO</au><au>Caio Chaussê de FREITAS</au><au>éder Sócrates Najar LOPES</au><au>Suk-Chun MOON</au><au>Rian DIPPENAAR</au><au>Rubens CARAM</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>半固态加工Ti?Cu合金的显微组织和力学行为</atitle><jtitle>中国有色金属学报(英文版)</jtitle><date>2022</date><risdate>2022</risdate><volume>32</volume><issue>11</issue><spage>3578</spage><epage>3586</epage><pages>3578-3586</pages><issn>1003-6326</issn><abstract>研究触变成形Ti?Cu合金的力学性能.Ti?Cu(25%,27%,29%Cu,质量分数)锭的制备流程为:先进行电弧熔炼,再在950℃均匀化处理24 h,然后在900℃热锻,最后在1035℃热处理300 s后以8 mm/s的速度触变成形.结果显示,触变成形合金表现出良好的力学强度,但其在拉伸载荷下的塑性一般,在压缩载荷下的塑性尚可.随着Cu含量的增加,包晶Ti2Cu相(转变液相区)的体积分数增加,与α+Ti2Cu相区(转变固相区)相比,其力学强度和塑性更低,导致合金的力学强度和塑性降低.这些结果表明,Ti?Cu合金的力学性能和半固态加工性之间的平衡主要取决于Cu含量.</abstract><pub>School of Mechanical Engineering, University of Campinas, Campinas, SP, Brazil%School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia%School of Mechanical Engineering,University of Campinas,Campinas,SP,Brazil</pub><doi>10.1016/S1003-6326(22)66040-0</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1003-6326 |
ispartof | 中国有色金属学报(英文版), 2022, Vol.32 (11), p.3578-3586 |
issn | 1003-6326 |
language | chi |
recordid | cdi_wanfang_journals_zgysjsxb_e202211006 |
source | Access via ScienceDirect (Elsevier); Alma/SFX Local Collection |
title | 半固态加工Ti?Cu合金的显微组织和力学行为 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E5%8D%8A%E5%9B%BA%E6%80%81%E5%8A%A0%E5%B7%A5Ti?Cu%E5%90%88%E9%87%91%E7%9A%84%E6%98%BE%E5%BE%AE%E7%BB%84%E7%BB%87%E5%92%8C%E5%8A%9B%E5%AD%A6%E8%A1%8C%E4%B8%BA&rft.jtitle=%E4%B8%AD%E5%9B%BD%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Kaio%20NIITSU%20CAMPO&rft.date=2022&rft.volume=32&rft.issue=11&rft.spage=3578&rft.epage=3586&rft.pages=3578-3586&rft.issn=1003-6326&rft_id=info:doi/10.1016/S1003-6326(22)66040-0&rft_dat=%3Cwanfang_jour%3Ezgysjsxb_e202211006%3C/wanfang_jour%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgysjsxb_e202211006&rfr_iscdi=true |