Effect of nanoclay on properties of porous PVdF membranes
The main requirements for battery separators are high porosity which can serve pathways of lithium ion and space for gel electrolytes to impregnate in a membrane and mechanical strength to allow easy handling for battery assembly. Generally, it appears the trade-off relationship between the porosity...
Gespeichert in:
Veröffentlicht in: | Transactions of Nonferrous Metals Society of China 2011-03, Vol.21 (1), p.141-147 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main requirements for battery separators are high porosity which can serve pathways of lithium ion and space for gel electrolytes to impregnate in a membrane and mechanical strength to allow easy handling for battery assembly. Generally, it appears the trade-off relationship between the porosity and mechanical strength of the membrane. PVdF composite membranes containing nano-size clays were used to improve the mechanical strength of the membrane without affecting the membrane porosity. The composite membranes were prepared by phase inversion method controlling the membrane preparation conditions such as retention time. The resultant membranes show increased mechanical properties with similar membrane porosity around 80 % compared to the pristine PVdF membrane. Incorporation of nonoclay can be considered as an effective method to improve the mechanica! strength in porous membrane supports, especially in a separator. |
---|---|
ISSN: | 1003-6326 |
DOI: | 10.1016/S1003-6326(11)61078-9 |