Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene

Detection of local strain at the nanometer scale with high sensitivity remains challenging. Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phonon frequency. As a non-polar crystal, intrinsic bilayer graphene possesses little i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics letters 2021-06, Vol.38 (5), p.56301-73
Hauptverfasser: Du, Jing, Lyu, Bosai, Shan, Wanfei, Chen, Jiajun, Zhou, Xianliang, Xie, Jingxu, Deng, Aolin, Hu, Cheng, Liang, Qi, Xie, Guibai, Li, Xiaojun, Luo, Weidong, Shi, Zhiwen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 5
container_start_page 56301
container_title Chinese physics letters
container_volume 38
creator Du, Jing
Lyu, Bosai
Shan, Wanfei
Chen, Jiajun
Zhou, Xianliang
Xie, Jingxu
Deng, Aolin
Hu, Cheng
Liang, Qi
Xie, Guibai
Li, Xiaojun
Luo, Weidong
Shi, Zhiwen
description Detection of local strain at the nanometer scale with high sensitivity remains challenging. Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phonon frequency. As a non-polar crystal, intrinsic bilayer graphene possesses little infrared response at its transverse optical phonon frequency. The reported optical detection of local strain is enabled by applying a vertical electrical field that breaks the symmetry of the two graphene layers and introduces finite electrical dipole moment to graphene phonon. The activated phonon further interacts with continuum electronic transitions, and generates a strong Fano resonance. The resulted Fano resonance features a very sharp near-field infrared scattering peak, which leads to an extraordinary sensitivity of ∼ 0.002% for the strain detection. Our results demonstrate the first nano-scale near-field Fano resonance, provide a new way to probe local strains with high sensitivity in non-polar crystals, and open exciting possibilities for studying strain-induced rich phenomena.
doi_str_mv 10.1088/0256-307X/38/5/056301
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zgwlkb_e202105012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwlkb_e202105012</wanfj_id><sourcerecordid>zgwlkb_e202105012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-a8c9a638ab372571187e62d1657204b351458aa11467f772d2feae7298a87c0a3</originalsourceid><addsrcrecordid>eNo9kG9LwzAQh4MoOKcfQchbX9TeJU2TvdSxzcFQ8Q_4Lly7pHZ26UgnY356OybCwR38Hu6Oh7FrhFsEY1IQKk8k6I9UmlSloHIJeMIGqDNMpMrglA3-mXN20XUrAESDOGDPUwotf3FdGyiUjk8CFY1b8nnwkWI_PPZ5Ml9TVYeKt54v2pIa_rqNVAfe133d0N5FPou0-XTBXbIzT03nrv76kL1PJ2_jh2TxNJuP7xZJKYzeJmTKEeXSUCG1ULr_RrtcLDFXWkBWSIWZMkSIWa691mIpvCOnxciQ0SWQHLKb494dBU-hsqv2O4b-ov2pds1XYZ0AgaAARc-qI1vGtuui83YT6zXFvUWwB4X2oMce9FhprLJHhfIXgSZikQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Du, Jing ; Lyu, Bosai ; Shan, Wanfei ; Chen, Jiajun ; Zhou, Xianliang ; Xie, Jingxu ; Deng, Aolin ; Hu, Cheng ; Liang, Qi ; Xie, Guibai ; Li, Xiaojun ; Luo, Weidong ; Shi, Zhiwen</creator><creatorcontrib>Du, Jing ; Lyu, Bosai ; Shan, Wanfei ; Chen, Jiajun ; Zhou, Xianliang ; Xie, Jingxu ; Deng, Aolin ; Hu, Cheng ; Liang, Qi ; Xie, Guibai ; Li, Xiaojun ; Luo, Weidong ; Shi, Zhiwen</creatorcontrib><description>Detection of local strain at the nanometer scale with high sensitivity remains challenging. Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phonon frequency. As a non-polar crystal, intrinsic bilayer graphene possesses little infrared response at its transverse optical phonon frequency. The reported optical detection of local strain is enabled by applying a vertical electrical field that breaks the symmetry of the two graphene layers and introduces finite electrical dipole moment to graphene phonon. The activated phonon further interacts with continuum electronic transitions, and generates a strong Fano resonance. The resulted Fano resonance features a very sharp near-field infrared scattering peak, which leads to an extraordinary sensitivity of ∼ 0.002% for the strain detection. Our results demonstrate the first nano-scale near-field Fano resonance, provide a new way to probe local strains with high sensitivity in non-polar crystals, and open exciting possibilities for studying strain-induced rich phenomena.</description><identifier>ISSN: 0256-307X</identifier><identifier>EISSN: 1741-3540</identifier><identifier>DOI: 10.1088/0256-307X/38/5/056301</identifier><language>eng</language><publisher>Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education),Shenyang National Laboratory for Materials Science,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China</publisher><ispartof>Chinese physics letters, 2021-06, Vol.38 (5), p.56301-73</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-a8c9a638ab372571187e62d1657204b351458aa11467f772d2feae7298a87c0a3</citedby><cites>FETCH-LOGICAL-c287t-a8c9a638ab372571187e62d1657204b351458aa11467f772d2feae7298a87c0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwlkb-e/zgwlkb-e.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Du, Jing</creatorcontrib><creatorcontrib>Lyu, Bosai</creatorcontrib><creatorcontrib>Shan, Wanfei</creatorcontrib><creatorcontrib>Chen, Jiajun</creatorcontrib><creatorcontrib>Zhou, Xianliang</creatorcontrib><creatorcontrib>Xie, Jingxu</creatorcontrib><creatorcontrib>Deng, Aolin</creatorcontrib><creatorcontrib>Hu, Cheng</creatorcontrib><creatorcontrib>Liang, Qi</creatorcontrib><creatorcontrib>Xie, Guibai</creatorcontrib><creatorcontrib>Li, Xiaojun</creatorcontrib><creatorcontrib>Luo, Weidong</creatorcontrib><creatorcontrib>Shi, Zhiwen</creatorcontrib><title>Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene</title><title>Chinese physics letters</title><description>Detection of local strain at the nanometer scale with high sensitivity remains challenging. Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phonon frequency. As a non-polar crystal, intrinsic bilayer graphene possesses little infrared response at its transverse optical phonon frequency. The reported optical detection of local strain is enabled by applying a vertical electrical field that breaks the symmetry of the two graphene layers and introduces finite electrical dipole moment to graphene phonon. The activated phonon further interacts with continuum electronic transitions, and generates a strong Fano resonance. The resulted Fano resonance features a very sharp near-field infrared scattering peak, which leads to an extraordinary sensitivity of ∼ 0.002% for the strain detection. Our results demonstrate the first nano-scale near-field Fano resonance, provide a new way to probe local strains with high sensitivity in non-polar crystals, and open exciting possibilities for studying strain-induced rich phenomena.</description><issn>0256-307X</issn><issn>1741-3540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kG9LwzAQh4MoOKcfQchbX9TeJU2TvdSxzcFQ8Q_4Lly7pHZ26UgnY356OybCwR38Hu6Oh7FrhFsEY1IQKk8k6I9UmlSloHIJeMIGqDNMpMrglA3-mXN20XUrAESDOGDPUwotf3FdGyiUjk8CFY1b8nnwkWI_PPZ5Ml9TVYeKt54v2pIa_rqNVAfe133d0N5FPou0-XTBXbIzT03nrv76kL1PJ2_jh2TxNJuP7xZJKYzeJmTKEeXSUCG1ULr_RrtcLDFXWkBWSIWZMkSIWa691mIpvCOnxciQ0SWQHLKb494dBU-hsqv2O4b-ov2pds1XYZ0AgaAARc-qI1vGtuui83YT6zXFvUWwB4X2oMce9FhprLJHhfIXgSZikQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Du, Jing</creator><creator>Lyu, Bosai</creator><creator>Shan, Wanfei</creator><creator>Chen, Jiajun</creator><creator>Zhou, Xianliang</creator><creator>Xie, Jingxu</creator><creator>Deng, Aolin</creator><creator>Hu, Cheng</creator><creator>Liang, Qi</creator><creator>Xie, Guibai</creator><creator>Li, Xiaojun</creator><creator>Luo, Weidong</creator><creator>Shi, Zhiwen</creator><general>Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education),Shenyang National Laboratory for Materials Science,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China</general><general>Institute of Natural Sciences,Shanghai Jiao Tong University,Shanghai 200240,China</general><general>Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China</general><general>Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China%Institute of Physics,Xi'an Jiaotong University,Xi'an 710049,China%National Key Laboratory of Science and Technology on Space Microwave,China Academy of Space Technology (Xi'an),Xi'an 710100,China%Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education),Shenyang National Laboratory for Materials Science,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20210601</creationdate><title>Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene</title><author>Du, Jing ; Lyu, Bosai ; Shan, Wanfei ; Chen, Jiajun ; Zhou, Xianliang ; Xie, Jingxu ; Deng, Aolin ; Hu, Cheng ; Liang, Qi ; Xie, Guibai ; Li, Xiaojun ; Luo, Weidong ; Shi, Zhiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-a8c9a638ab372571187e62d1657204b351458aa11467f772d2feae7298a87c0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Jing</creatorcontrib><creatorcontrib>Lyu, Bosai</creatorcontrib><creatorcontrib>Shan, Wanfei</creatorcontrib><creatorcontrib>Chen, Jiajun</creatorcontrib><creatorcontrib>Zhou, Xianliang</creatorcontrib><creatorcontrib>Xie, Jingxu</creatorcontrib><creatorcontrib>Deng, Aolin</creatorcontrib><creatorcontrib>Hu, Cheng</creatorcontrib><creatorcontrib>Liang, Qi</creatorcontrib><creatorcontrib>Xie, Guibai</creatorcontrib><creatorcontrib>Li, Xiaojun</creatorcontrib><creatorcontrib>Luo, Weidong</creatorcontrib><creatorcontrib>Shi, Zhiwen</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Jing</au><au>Lyu, Bosai</au><au>Shan, Wanfei</au><au>Chen, Jiajun</au><au>Zhou, Xianliang</au><au>Xie, Jingxu</au><au>Deng, Aolin</au><au>Hu, Cheng</au><au>Liang, Qi</au><au>Xie, Guibai</au><au>Li, Xiaojun</au><au>Luo, Weidong</au><au>Shi, Zhiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene</atitle><jtitle>Chinese physics letters</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>38</volume><issue>5</issue><spage>56301</spage><epage>73</epage><pages>56301-73</pages><issn>0256-307X</issn><eissn>1741-3540</eissn><abstract>Detection of local strain at the nanometer scale with high sensitivity remains challenging. Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phonon frequency. As a non-polar crystal, intrinsic bilayer graphene possesses little infrared response at its transverse optical phonon frequency. The reported optical detection of local strain is enabled by applying a vertical electrical field that breaks the symmetry of the two graphene layers and introduces finite electrical dipole moment to graphene phonon. The activated phonon further interacts with continuum electronic transitions, and generates a strong Fano resonance. The resulted Fano resonance features a very sharp near-field infrared scattering peak, which leads to an extraordinary sensitivity of ∼ 0.002% for the strain detection. Our results demonstrate the first nano-scale near-field Fano resonance, provide a new way to probe local strains with high sensitivity in non-polar crystals, and open exciting possibilities for studying strain-induced rich phenomena.</abstract><pub>Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education),Shenyang National Laboratory for Materials Science,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China</pub><doi>10.1088/0256-307X/38/5/056301</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-307X
ispartof Chinese physics letters, 2021-06, Vol.38 (5), p.56301-73
issn 0256-307X
1741-3540
language eng
recordid cdi_wanfang_journals_zgwlkb_e202105012
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection
title Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fano%20Resonance%20Enabled%20Infrared%20Nano-Imaging%20of%20Local%20Strain%20in%20Bilayer%20Graphene&rft.jtitle=Chinese%20physics%20letters&rft.au=Du,%20Jing&rft.date=2021-06-01&rft.volume=38&rft.issue=5&rft.spage=56301&rft.epage=73&rft.pages=56301-73&rft.issn=0256-307X&rft.eissn=1741-3540&rft_id=info:doi/10.1088/0256-307X/38/5/056301&rft_dat=%3Cwanfang_jour_cross%3Ezgwlkb_e202105012%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwlkb_e202105012&rfr_iscdi=true