Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors. Since geometric quantum gate is naturally insensitivity to noise, it appears to be a promising routine to achieve high-fidelity, robust quantum gates. The implementation...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2023-10, Vol.32 (10), p.100304-235 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 235 |
---|---|
container_issue | 10 |
container_start_page | 100304 |
container_title | Chinese physics B |
container_volume | 32 |
creator | Wang, Zhimin Ma, Zhuang Yu, Xiangmin Zheng, Wen Zhou, Kun Zhang, Yujia Zhang, Yu Lan, Dong Zhao, Jie Tan, Xinsheng Li, Shaoxiong Yu, Yang |
description | One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors. Since geometric quantum gate is naturally insensitivity to noise, it appears to be a promising routine to achieve high-fidelity, robust quantum gates. The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels. Moreover, traditional geometric schemes usually take more time than equivalent dynamical ones. Here, we experimentally demonstrate a geometric gate scheme with the time-optimal control (TOC) technique in a superconducting quantum circuit. With a transmon qubit and operations restricted to two computational levels, we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts. The measured fidelities of TOC
X
gate and
X
/2 gate are 99.81% and 99.79% respectively. Our work shows a promising routine toward scalable fault-tolerant quantum computation. |
doi_str_mv | 10.1088/1674-1056/ace15b |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zgwl_e202310026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202310026</wanfj_id><sourcerecordid>zgwl_e202310026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-c2e96e1dcee94e98eb4039b6bbd410db7c2b6a29db360f5c3f67adf68609c1703</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqWwM3pjIWDn4SQjqnhJlZAQzJYf14mr1G4dR1U78NtJFQQTyz3DPedc3Q-ha0ruKKmqe8rKPKGkYPdCAS3kCZqlpKiSrMryUzT7XZ-ji75fEcIoSbMZ-noH0dmDiNY77A1ubdMmxmrobNxj4TQOXg59xA34NcRgFW5EhB7vbGxxtGtI_GYU0WHlXQy-wxFU6-x2AGwd7ocNhHGjBxWta_B2EC4Oa6xsUIONl-jMiK6Hqx-do8-nx4_FS7J8e35dPCwTlbIijhNqBlQrgDqHugKZk6yWTEqdU6JlqVLJRFprmTFiCpUZVgptWMVIrWhJsjm6mXp3whnhGr7yQ3DjRX5odh2HdIRBCUnZ6CSTUwXf9wEM34TxvbDnlPAjaX5EyY8o-UR6jNxOEes3f8X_2r8BBQ-D2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit</title><source>IOP Publishing Journals</source><creator>Wang, Zhimin ; Ma, Zhuang ; Yu, Xiangmin ; Zheng, Wen ; Zhou, Kun ; Zhang, Yujia ; Zhang, Yu ; Lan, Dong ; Zhao, Jie ; Tan, Xinsheng ; Li, Shaoxiong ; Yu, Yang</creator><creatorcontrib>Wang, Zhimin ; Ma, Zhuang ; Yu, Xiangmin ; Zheng, Wen ; Zhou, Kun ; Zhang, Yujia ; Zhang, Yu ; Lan, Dong ; Zhao, Jie ; Tan, Xinsheng ; Li, Shaoxiong ; Yu, Yang</creatorcontrib><description>One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors. Since geometric quantum gate is naturally insensitivity to noise, it appears to be a promising routine to achieve high-fidelity, robust quantum gates. The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels. Moreover, traditional geometric schemes usually take more time than equivalent dynamical ones. Here, we experimentally demonstrate a geometric gate scheme with the time-optimal control (TOC) technique in a superconducting quantum circuit. With a transmon qubit and operations restricted to two computational levels, we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts. The measured fidelities of TOC
X
gate and
X
/2 gate are 99.81% and 99.79% respectively. Our work shows a promising routine toward scalable fault-tolerant quantum computation.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>DOI: 10.1088/1674-1056/ace15b</identifier><language>eng</language><publisher>Chinese Physical Society and IOP Publishing Ltd</publisher><subject>geometric quantum computation ; superconducting qubits ; time-optimal control</subject><ispartof>Chinese physics B, 2023-10, Vol.32 (10), p.100304-235</ispartof><rights>2023 Chinese Physical Society and IOP Publishing Ltd</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c265t-c2e96e1dcee94e98eb4039b6bbd410db7c2b6a29db360f5c3f67adf68609c1703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1674-1056/ace15b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824</link.rule.ids></links><search><creatorcontrib>Wang, Zhimin</creatorcontrib><creatorcontrib>Ma, Zhuang</creatorcontrib><creatorcontrib>Yu, Xiangmin</creatorcontrib><creatorcontrib>Zheng, Wen</creatorcontrib><creatorcontrib>Zhou, Kun</creatorcontrib><creatorcontrib>Zhang, Yujia</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Lan, Dong</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Tan, Xinsheng</creatorcontrib><creatorcontrib>Li, Shaoxiong</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><title>Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit</title><title>Chinese physics B</title><addtitle>Chin. Phys. B</addtitle><description>One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors. Since geometric quantum gate is naturally insensitivity to noise, it appears to be a promising routine to achieve high-fidelity, robust quantum gates. The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels. Moreover, traditional geometric schemes usually take more time than equivalent dynamical ones. Here, we experimentally demonstrate a geometric gate scheme with the time-optimal control (TOC) technique in a superconducting quantum circuit. With a transmon qubit and operations restricted to two computational levels, we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts. The measured fidelities of TOC
X
gate and
X
/2 gate are 99.81% and 99.79% respectively. Our work shows a promising routine toward scalable fault-tolerant quantum computation.</description><subject>geometric quantum computation</subject><subject>superconducting qubits</subject><subject>time-optimal control</subject><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqWwM3pjIWDn4SQjqnhJlZAQzJYf14mr1G4dR1U78NtJFQQTyz3DPedc3Q-ha0ruKKmqe8rKPKGkYPdCAS3kCZqlpKiSrMryUzT7XZ-ji75fEcIoSbMZ-noH0dmDiNY77A1ubdMmxmrobNxj4TQOXg59xA34NcRgFW5EhB7vbGxxtGtI_GYU0WHlXQy-wxFU6-x2AGwd7ocNhHGjBxWta_B2EC4Oa6xsUIONl-jMiK6Hqx-do8-nx4_FS7J8e35dPCwTlbIijhNqBlQrgDqHugKZk6yWTEqdU6JlqVLJRFprmTFiCpUZVgptWMVIrWhJsjm6mXp3whnhGr7yQ3DjRX5odh2HdIRBCUnZ6CSTUwXf9wEM34TxvbDnlPAjaX5EyY8o-UR6jNxOEes3f8X_2r8BBQ-D2Q</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wang, Zhimin</creator><creator>Ma, Zhuang</creator><creator>Yu, Xiangmin</creator><creator>Zheng, Wen</creator><creator>Zhou, Kun</creator><creator>Zhang, Yujia</creator><creator>Zhang, Yu</creator><creator>Lan, Dong</creator><creator>Zhao, Jie</creator><creator>Tan, Xinsheng</creator><creator>Li, Shaoxiong</creator><creator>Yu, Yang</creator><general>Chinese Physical Society and IOP Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20231001</creationdate><title>Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit</title><author>Wang, Zhimin ; Ma, Zhuang ; Yu, Xiangmin ; Zheng, Wen ; Zhou, Kun ; Zhang, Yujia ; Zhang, Yu ; Lan, Dong ; Zhao, Jie ; Tan, Xinsheng ; Li, Shaoxiong ; Yu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-c2e96e1dcee94e98eb4039b6bbd410db7c2b6a29db360f5c3f67adf68609c1703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>geometric quantum computation</topic><topic>superconducting qubits</topic><topic>time-optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhimin</creatorcontrib><creatorcontrib>Ma, Zhuang</creatorcontrib><creatorcontrib>Yu, Xiangmin</creatorcontrib><creatorcontrib>Zheng, Wen</creatorcontrib><creatorcontrib>Zhou, Kun</creatorcontrib><creatorcontrib>Zhang, Yujia</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Lan, Dong</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Tan, Xinsheng</creatorcontrib><creatorcontrib>Li, Shaoxiong</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhimin</au><au>Ma, Zhuang</au><au>Yu, Xiangmin</au><au>Zheng, Wen</au><au>Zhou, Kun</au><au>Zhang, Yujia</au><au>Zhang, Yu</au><au>Lan, Dong</au><au>Zhao, Jie</au><au>Tan, Xinsheng</au><au>Li, Shaoxiong</au><au>Yu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chin. Phys. B</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>32</volume><issue>10</issue><spage>100304</spage><epage>235</epage><pages>100304-235</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors. Since geometric quantum gate is naturally insensitivity to noise, it appears to be a promising routine to achieve high-fidelity, robust quantum gates. The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels. Moreover, traditional geometric schemes usually take more time than equivalent dynamical ones. Here, we experimentally demonstrate a geometric gate scheme with the time-optimal control (TOC) technique in a superconducting quantum circuit. With a transmon qubit and operations restricted to two computational levels, we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts. The measured fidelities of TOC
X
gate and
X
/2 gate are 99.81% and 99.79% respectively. Our work shows a promising routine toward scalable fault-tolerant quantum computation.</abstract><pub>Chinese Physical Society and IOP Publishing Ltd</pub><doi>10.1088/1674-1056/ace15b</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2023-10, Vol.32 (10), p.100304-235 |
issn | 1674-1056 2058-3834 |
language | eng |
recordid | cdi_wanfang_journals_zgwl_e202310026 |
source | IOP Publishing Journals |
subjects | geometric quantum computation superconducting qubits time-optimal control |
title | Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realization%20of%20high-fidelity%20and%20robust%20geometric%20gates%20with%20time-optimal%20control%20technique%20in%20superconducting%20quantum%20circuit&rft.jtitle=Chinese%20physics%20B&rft.au=Wang,%20Zhimin&rft.date=2023-10-01&rft.volume=32&rft.issue=10&rft.spage=100304&rft.epage=235&rft.pages=100304-235&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/ace15b&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202310026%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202310026&rfr_iscdi=true |