Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit

One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors. Since geometric quantum gate is naturally insensitivity to noise, it appears to be a promising routine to achieve high-fidelity, robust quantum gates. The implementation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2023-10, Vol.32 (10), p.100304-235
Hauptverfasser: Wang, Zhimin, Ma, Zhuang, Yu, Xiangmin, Zheng, Wen, Zhou, Kun, Zhang, Yujia, Zhang, Yu, Lan, Dong, Zhao, Jie, Tan, Xinsheng, Li, Shaoxiong, Yu, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 10
container_start_page 100304
container_title Chinese physics B
container_volume 32
creator Wang, Zhimin
Ma, Zhuang
Yu, Xiangmin
Zheng, Wen
Zhou, Kun
Zhang, Yujia
Zhang, Yu
Lan, Dong
Zhao, Jie
Tan, Xinsheng
Li, Shaoxiong
Yu, Yang
description One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors. Since geometric quantum gate is naturally insensitivity to noise, it appears to be a promising routine to achieve high-fidelity, robust quantum gates. The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels. Moreover, traditional geometric schemes usually take more time than equivalent dynamical ones. Here, we experimentally demonstrate a geometric gate scheme with the time-optimal control (TOC) technique in a superconducting quantum circuit. With a transmon qubit and operations restricted to two computational levels, we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts. The measured fidelities of TOC X gate and X /2 gate are 99.81% and 99.79% respectively. Our work shows a promising routine toward scalable fault-tolerant quantum computation.
doi_str_mv 10.1088/1674-1056/ace15b
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zgwl_e202310026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202310026</wanfj_id><sourcerecordid>zgwl_e202310026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-c2e96e1dcee94e98eb4039b6bbd410db7c2b6a29db360f5c3f67adf68609c1703</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqWwM3pjIWDn4SQjqnhJlZAQzJYf14mr1G4dR1U78NtJFQQTyz3DPedc3Q-ha0ruKKmqe8rKPKGkYPdCAS3kCZqlpKiSrMryUzT7XZ-ji75fEcIoSbMZ-noH0dmDiNY77A1ubdMmxmrobNxj4TQOXg59xA34NcRgFW5EhB7vbGxxtGtI_GYU0WHlXQy-wxFU6-x2AGwd7ocNhHGjBxWta_B2EC4Oa6xsUIONl-jMiK6Hqx-do8-nx4_FS7J8e35dPCwTlbIijhNqBlQrgDqHugKZk6yWTEqdU6JlqVLJRFprmTFiCpUZVgptWMVIrWhJsjm6mXp3whnhGr7yQ3DjRX5odh2HdIRBCUnZ6CSTUwXf9wEM34TxvbDnlPAjaX5EyY8o-UR6jNxOEes3f8X_2r8BBQ-D2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit</title><source>IOP Publishing Journals</source><creator>Wang, Zhimin ; Ma, Zhuang ; Yu, Xiangmin ; Zheng, Wen ; Zhou, Kun ; Zhang, Yujia ; Zhang, Yu ; Lan, Dong ; Zhao, Jie ; Tan, Xinsheng ; Li, Shaoxiong ; Yu, Yang</creator><creatorcontrib>Wang, Zhimin ; Ma, Zhuang ; Yu, Xiangmin ; Zheng, Wen ; Zhou, Kun ; Zhang, Yujia ; Zhang, Yu ; Lan, Dong ; Zhao, Jie ; Tan, Xinsheng ; Li, Shaoxiong ; Yu, Yang</creatorcontrib><description>One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors. Since geometric quantum gate is naturally insensitivity to noise, it appears to be a promising routine to achieve high-fidelity, robust quantum gates. The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels. Moreover, traditional geometric schemes usually take more time than equivalent dynamical ones. Here, we experimentally demonstrate a geometric gate scheme with the time-optimal control (TOC) technique in a superconducting quantum circuit. With a transmon qubit and operations restricted to two computational levels, we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts. The measured fidelities of TOC X gate and X /2 gate are 99.81% and 99.79% respectively. Our work shows a promising routine toward scalable fault-tolerant quantum computation.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>DOI: 10.1088/1674-1056/ace15b</identifier><language>eng</language><publisher>Chinese Physical Society and IOP Publishing Ltd</publisher><subject>geometric quantum computation ; superconducting qubits ; time-optimal control</subject><ispartof>Chinese physics B, 2023-10, Vol.32 (10), p.100304-235</ispartof><rights>2023 Chinese Physical Society and IOP Publishing Ltd</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c265t-c2e96e1dcee94e98eb4039b6bbd410db7c2b6a29db360f5c3f67adf68609c1703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1674-1056/ace15b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824</link.rule.ids></links><search><creatorcontrib>Wang, Zhimin</creatorcontrib><creatorcontrib>Ma, Zhuang</creatorcontrib><creatorcontrib>Yu, Xiangmin</creatorcontrib><creatorcontrib>Zheng, Wen</creatorcontrib><creatorcontrib>Zhou, Kun</creatorcontrib><creatorcontrib>Zhang, Yujia</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Lan, Dong</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Tan, Xinsheng</creatorcontrib><creatorcontrib>Li, Shaoxiong</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><title>Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit</title><title>Chinese physics B</title><addtitle>Chin. Phys. B</addtitle><description>One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors. Since geometric quantum gate is naturally insensitivity to noise, it appears to be a promising routine to achieve high-fidelity, robust quantum gates. The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels. Moreover, traditional geometric schemes usually take more time than equivalent dynamical ones. Here, we experimentally demonstrate a geometric gate scheme with the time-optimal control (TOC) technique in a superconducting quantum circuit. With a transmon qubit and operations restricted to two computational levels, we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts. The measured fidelities of TOC X gate and X /2 gate are 99.81% and 99.79% respectively. Our work shows a promising routine toward scalable fault-tolerant quantum computation.</description><subject>geometric quantum computation</subject><subject>superconducting qubits</subject><subject>time-optimal control</subject><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqWwM3pjIWDn4SQjqnhJlZAQzJYf14mr1G4dR1U78NtJFQQTyz3DPedc3Q-ha0ruKKmqe8rKPKGkYPdCAS3kCZqlpKiSrMryUzT7XZ-ji75fEcIoSbMZ-noH0dmDiNY77A1ubdMmxmrobNxj4TQOXg59xA34NcRgFW5EhB7vbGxxtGtI_GYU0WHlXQy-wxFU6-x2AGwd7ocNhHGjBxWta_B2EC4Oa6xsUIONl-jMiK6Hqx-do8-nx4_FS7J8e35dPCwTlbIijhNqBlQrgDqHugKZk6yWTEqdU6JlqVLJRFprmTFiCpUZVgptWMVIrWhJsjm6mXp3whnhGr7yQ3DjRX5odh2HdIRBCUnZ6CSTUwXf9wEM34TxvbDnlPAjaX5EyY8o-UR6jNxOEes3f8X_2r8BBQ-D2Q</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wang, Zhimin</creator><creator>Ma, Zhuang</creator><creator>Yu, Xiangmin</creator><creator>Zheng, Wen</creator><creator>Zhou, Kun</creator><creator>Zhang, Yujia</creator><creator>Zhang, Yu</creator><creator>Lan, Dong</creator><creator>Zhao, Jie</creator><creator>Tan, Xinsheng</creator><creator>Li, Shaoxiong</creator><creator>Yu, Yang</creator><general>Chinese Physical Society and IOP Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20231001</creationdate><title>Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit</title><author>Wang, Zhimin ; Ma, Zhuang ; Yu, Xiangmin ; Zheng, Wen ; Zhou, Kun ; Zhang, Yujia ; Zhang, Yu ; Lan, Dong ; Zhao, Jie ; Tan, Xinsheng ; Li, Shaoxiong ; Yu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-c2e96e1dcee94e98eb4039b6bbd410db7c2b6a29db360f5c3f67adf68609c1703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>geometric quantum computation</topic><topic>superconducting qubits</topic><topic>time-optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhimin</creatorcontrib><creatorcontrib>Ma, Zhuang</creatorcontrib><creatorcontrib>Yu, Xiangmin</creatorcontrib><creatorcontrib>Zheng, Wen</creatorcontrib><creatorcontrib>Zhou, Kun</creatorcontrib><creatorcontrib>Zhang, Yujia</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Lan, Dong</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Tan, Xinsheng</creatorcontrib><creatorcontrib>Li, Shaoxiong</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhimin</au><au>Ma, Zhuang</au><au>Yu, Xiangmin</au><au>Zheng, Wen</au><au>Zhou, Kun</au><au>Zhang, Yujia</au><au>Zhang, Yu</au><au>Lan, Dong</au><au>Zhao, Jie</au><au>Tan, Xinsheng</au><au>Li, Shaoxiong</au><au>Yu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chin. Phys. B</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>32</volume><issue>10</issue><spage>100304</spage><epage>235</epage><pages>100304-235</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors. Since geometric quantum gate is naturally insensitivity to noise, it appears to be a promising routine to achieve high-fidelity, robust quantum gates. The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels. Moreover, traditional geometric schemes usually take more time than equivalent dynamical ones. Here, we experimentally demonstrate a geometric gate scheme with the time-optimal control (TOC) technique in a superconducting quantum circuit. With a transmon qubit and operations restricted to two computational levels, we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts. The measured fidelities of TOC X gate and X /2 gate are 99.81% and 99.79% respectively. Our work shows a promising routine toward scalable fault-tolerant quantum computation.</abstract><pub>Chinese Physical Society and IOP Publishing Ltd</pub><doi>10.1088/1674-1056/ace15b</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2023-10, Vol.32 (10), p.100304-235
issn 1674-1056
2058-3834
language eng
recordid cdi_wanfang_journals_zgwl_e202310026
source IOP Publishing Journals
subjects geometric quantum computation
superconducting qubits
time-optimal control
title Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realization%20of%20high-fidelity%20and%20robust%20geometric%20gates%20with%20time-optimal%20control%20technique%20in%20superconducting%20quantum%20circuit&rft.jtitle=Chinese%20physics%20B&rft.au=Wang,%20Zhimin&rft.date=2023-10-01&rft.volume=32&rft.issue=10&rft.spage=100304&rft.epage=235&rft.pages=100304-235&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/ace15b&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202310026%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202310026&rfr_iscdi=true