Crysformer: An attention-based graph neural network for properties prediction of crystals
We present a novel approach for the prediction of crystal material properties that is distinct from the computationally complex and expensive density functional theory (DFT)-based calculations. Instead, we utilize an attention-based graph neural network that yields high-accuracy predictions. Our app...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2023-09, Vol.32 (9), p.90703-22 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 9 |
container_start_page | 90703 |
container_title | Chinese physics B |
container_volume | 32 |
creator | Wang, Tian Chen, Jiahui Teng, Jing Shi, Jingang Zeng, Xinhua Snoussi, Hichem |
description | We present a novel approach for the prediction of crystal material properties that is distinct from the computationally complex and expensive density functional theory (DFT)-based calculations. Instead, we utilize an attention-based graph neural network that yields high-accuracy predictions. Our approach employs two attention mechanisms that allow for message passing on the crystal graphs, which in turn enable the model to selectively attend to pertinent atoms and their local environments, thereby improving performance. We conduct comprehensive experiments to validate our approach, which demonstrates that our method surpasses existing methods in terms of predictive accuracy. Our results suggest that deep learning, particularly attention-based networks, holds significant promise for predicting crystal material properties, with implications for material discovery and the refined intelligent systems. |
doi_str_mv | 10.1088/1674-1056/ace247 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_hal_p</sourceid><recordid>TN_cdi_wanfang_journals_zgwl_e202309002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202309002</wanfj_id><sourcerecordid>zgwl_e202309002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-e512acb8dfe9c48af7e3990bd0f7cfb816dd8a8dc00a4d2f60d1d08544d11cbb3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3j7mJYN1LmraptzHUCQMvevAU0vzYOremJJ1j_vWmVObJy_s-ks_3y-OL0DWBewKcT0hesIRAlk-kMpQVJ2hEIeNJylN2ikbH73N0EcIaICdA0xH6mPlDsM5vjX_A0wbLrjNNV7smqWQwGi-9bFe4MTsvN1G6vfOfOPK49a41vqtNiKvRtepN2FmsYmAnN-ESndko5upXx-j96fFtNk8Wr88vs-kiUbQsu8RkhEpVcW1NqRiXtjBpWUKlwRbKVpzkWnPJtQKQTFObgyYaeMaYJkRVVTpGt0PuSm5E6-ut9AfhZC3m04Xo34AxWuaEfZHI3gzsXjZWNkuxdjvfxOvE93K_EYbGTqCEOMcIBlJ5F4I39hhNQPSFi75R0TcqhsKj5W6w1K79C_4X_wH79ILz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crysformer: An attention-based graph neural network for properties prediction of crystals</title><source>Institute of Physics Journals</source><creator>Wang, Tian ; Chen, Jiahui ; Teng, Jing ; Shi, Jingang ; Zeng, Xinhua ; Snoussi, Hichem</creator><creatorcontrib>Wang, Tian ; Chen, Jiahui ; Teng, Jing ; Shi, Jingang ; Zeng, Xinhua ; Snoussi, Hichem</creatorcontrib><description>We present a novel approach for the prediction of crystal material properties that is distinct from the computationally complex and expensive density functional theory (DFT)-based calculations. Instead, we utilize an attention-based graph neural network that yields high-accuracy predictions. Our approach employs two attention mechanisms that allow for message passing on the crystal graphs, which in turn enable the model to selectively attend to pertinent atoms and their local environments, thereby improving performance. We conduct comprehensive experiments to validate our approach, which demonstrates that our method surpasses existing methods in terms of predictive accuracy. Our results suggest that deep learning, particularly attention-based networks, holds significant promise for predicting crystal material properties, with implications for material discovery and the refined intelligent systems.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>DOI: 10.1088/1674-1056/ace247</identifier><language>eng</language><publisher>Chinese Physical Society and IOP Publishing Ltd</publisher><subject>attention networks ; Computer Science ; crystal ; deep learning ; property prediction</subject><ispartof>Chinese physics B, 2023-09, Vol.32 (9), p.90703-22</ispartof><rights>2023 Chinese Physical Society and IOP Publishing Ltd</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-e512acb8dfe9c48af7e3990bd0f7cfb816dd8a8dc00a4d2f60d1d08544d11cbb3</cites><orcidid>0000-0002-6563-2135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1674-1056/ace247/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846</link.rule.ids><backlink>$$Uhttps://utt.hal.science/hal-04429614$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Chen, Jiahui</creatorcontrib><creatorcontrib>Teng, Jing</creatorcontrib><creatorcontrib>Shi, Jingang</creatorcontrib><creatorcontrib>Zeng, Xinhua</creatorcontrib><creatorcontrib>Snoussi, Hichem</creatorcontrib><title>Crysformer: An attention-based graph neural network for properties prediction of crystals</title><title>Chinese physics B</title><addtitle>Chin. Phys. B</addtitle><description>We present a novel approach for the prediction of crystal material properties that is distinct from the computationally complex and expensive density functional theory (DFT)-based calculations. Instead, we utilize an attention-based graph neural network that yields high-accuracy predictions. Our approach employs two attention mechanisms that allow for message passing on the crystal graphs, which in turn enable the model to selectively attend to pertinent atoms and their local environments, thereby improving performance. We conduct comprehensive experiments to validate our approach, which demonstrates that our method surpasses existing methods in terms of predictive accuracy. Our results suggest that deep learning, particularly attention-based networks, holds significant promise for predicting crystal material properties, with implications for material discovery and the refined intelligent systems.</description><subject>attention networks</subject><subject>Computer Science</subject><subject>crystal</subject><subject>deep learning</subject><subject>property prediction</subject><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3j7mJYN1LmraptzHUCQMvevAU0vzYOremJJ1j_vWmVObJy_s-ks_3y-OL0DWBewKcT0hesIRAlk-kMpQVJ2hEIeNJylN2ikbH73N0EcIaICdA0xH6mPlDsM5vjX_A0wbLrjNNV7smqWQwGi-9bFe4MTsvN1G6vfOfOPK49a41vqtNiKvRtepN2FmsYmAnN-ESndko5upXx-j96fFtNk8Wr88vs-kiUbQsu8RkhEpVcW1NqRiXtjBpWUKlwRbKVpzkWnPJtQKQTFObgyYaeMaYJkRVVTpGt0PuSm5E6-ut9AfhZC3m04Xo34AxWuaEfZHI3gzsXjZWNkuxdjvfxOvE93K_EYbGTqCEOMcIBlJ5F4I39hhNQPSFi75R0TcqhsKj5W6w1K79C_4X_wH79ILz</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Wang, Tian</creator><creator>Chen, Jiahui</creator><creator>Teng, Jing</creator><creator>Shi, Jingang</creator><creator>Zeng, Xinhua</creator><creator>Snoussi, Hichem</creator><general>Chinese Physical Society and IOP Publishing Ltd</general><general>Institute of Artificial Intelligence,SKLSDE,Beihang University,Beijing 100191,China</general><general>Zhongguancun Laboratory,Beijing 100191,China%School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China%School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China%School of Software Engineering,Xi'an Jiaotong University,Xi'an 710049,China%Academy for Engineering and Technology,Fudan University,Shanghai 200433,China%Charles Delaunay Institute,University of Technology of Troyes,Troyes Cedex 10004,France</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6563-2135</orcidid></search><sort><creationdate>20230901</creationdate><title>Crysformer: An attention-based graph neural network for properties prediction of crystals</title><author>Wang, Tian ; Chen, Jiahui ; Teng, Jing ; Shi, Jingang ; Zeng, Xinhua ; Snoussi, Hichem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-e512acb8dfe9c48af7e3990bd0f7cfb816dd8a8dc00a4d2f60d1d08544d11cbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>attention networks</topic><topic>Computer Science</topic><topic>crystal</topic><topic>deep learning</topic><topic>property prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Chen, Jiahui</creatorcontrib><creatorcontrib>Teng, Jing</creatorcontrib><creatorcontrib>Shi, Jingang</creatorcontrib><creatorcontrib>Zeng, Xinhua</creatorcontrib><creatorcontrib>Snoussi, Hichem</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tian</au><au>Chen, Jiahui</au><au>Teng, Jing</au><au>Shi, Jingang</au><au>Zeng, Xinhua</au><au>Snoussi, Hichem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crysformer: An attention-based graph neural network for properties prediction of crystals</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chin. Phys. B</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>32</volume><issue>9</issue><spage>90703</spage><epage>22</epage><pages>90703-22</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>We present a novel approach for the prediction of crystal material properties that is distinct from the computationally complex and expensive density functional theory (DFT)-based calculations. Instead, we utilize an attention-based graph neural network that yields high-accuracy predictions. Our approach employs two attention mechanisms that allow for message passing on the crystal graphs, which in turn enable the model to selectively attend to pertinent atoms and their local environments, thereby improving performance. We conduct comprehensive experiments to validate our approach, which demonstrates that our method surpasses existing methods in terms of predictive accuracy. Our results suggest that deep learning, particularly attention-based networks, holds significant promise for predicting crystal material properties, with implications for material discovery and the refined intelligent systems.</abstract><pub>Chinese Physical Society and IOP Publishing Ltd</pub><doi>10.1088/1674-1056/ace247</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6563-2135</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2023-09, Vol.32 (9), p.90703-22 |
issn | 1674-1056 2058-3834 |
language | eng |
recordid | cdi_wanfang_journals_zgwl_e202309002 |
source | Institute of Physics Journals |
subjects | attention networks Computer Science crystal deep learning property prediction |
title | Crysformer: An attention-based graph neural network for properties prediction of crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crysformer:%20An%20attention-based%20graph%20neural%20network%20for%20properties%20prediction%20of%20crystals&rft.jtitle=Chinese%20physics%20B&rft.au=Wang,%20Tian&rft.date=2023-09-01&rft.volume=32&rft.issue=9&rft.spage=90703&rft.epage=22&rft.pages=90703-22&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/ace247&rft_dat=%3Cwanfang_jour_hal_p%3Ezgwl_e202309002%3C/wanfang_jour_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202309002&rfr_iscdi=true |