Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate

Monolayer MnTe2 stabilized as 1T structure has been theoretically predicted to be a two-dimensional (2D) ferromag-netic metal and can be tuned via strain engineering.There is no naturally van der Waals (vdW) layered MnTe2 bulk,leaving mechanical exfoliation impossible to prepare monolayer MnTe2.Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国物理B(英文版) 2021-12, Vol.30 (12), p.157-163
Hauptverfasser: S Lu, K Peng, P D Wang, A X Chen, W Ren, X W Fang, Y Wu, Z Y Li, H F Li, F Y Cheng, K L Xiong, J Y Yang, J Z Wang, S A Ding, Y P Jiang, L Wang, Q Li, F S Li, L F Chi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monolayer MnTe2 stabilized as 1T structure has been theoretically predicted to be a two-dimensional (2D) ferromag-netic metal and can be tuned via strain engineering.There is no naturally van der Waals (vdW) layered MnTe2 bulk,leaving mechanical exfoliation impossible to prepare monolayer MnTe2.Herein,by means of molecular beam epitaxy (MBE),we successfully prepared monolayer hexagonal MnTe2 on Si(111) under Te rich condition.Sharp reflection high-energy elec-tron diffraction (RHEED) and low-energy electron diffraction (LEED) pattems suggest the monolayer is atomically flat without surface reconstruction.The valence state of Mn4+ and the atom ratio of ([Te]:[Mn]) further confirm the MnTe2 compound.Scanning tunneling spectroscopy (STS) shows the hexagonal MnTe2 monolayer is a semiconductor with a large bandgap of ~ 2.78 eV.The valence-band maximum (VBM) locates at the Γ point,as illustrated by angle-resolved photoemission spectroscopy (ARPES),below which three hole-type bands with parabolic dispersion can be identified.The successful synthesis of monolayer MnTe2 film provides a new platform to investigate the 2D magnetism.
ISSN:1674-1056
DOI:10.1088/1674-1056/ac2e63