A memristive map with coexisting chaos and hyperchaos
By introducing a discrete memristor and periodic sinusoidal functions, a two-dimensional map with coexisting chaos and hyperchaos is constructed. Various coexisting chaotic and hyperchaotic attractors under different Lyapunov exponents are firstly found in this discrete map, along with which other r...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2021-11, Vol.30 (11), p.110502-332 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | 11 |
container_start_page | 110502 |
container_title | Chinese physics B |
container_volume | 30 |
creator | Kong, Sixiao Li, Chunbiao He, Shaobo Çiçek, Serdar Lai, Qiang |
description | By introducing a discrete memristor and periodic sinusoidal functions, a two-dimensional map with coexisting chaos and hyperchaos is constructed. Various coexisting chaotic and hyperchaotic attractors under different Lyapunov exponents are firstly found in this discrete map, along with which other regimes of coexistence such as coexisting chaos, quasi-periodic oscillation, and discrete periodic points are also captured. The hyperchaotic attractors can be flexibly controlled to be unipolar or bipolar by newly embedded constants meanwhile the amplitude can also be controlled in combination with those coexisting attractors. Based on the nonlinear auto-regressive model with exogenous inputs (NARX) for neural network, the dynamics of the memristive map is well predicted, which provides a potential passage in artificial intelligence-based applications. |
doi_str_mv | 10.1088/1674-1056/abf4fb |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zgwl_e202111036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202111036</wanfj_id><sourcerecordid>zgwl_e202111036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-c4babaa444205f4d91541ad62d740a5e1eb86a53eafef573f225f37711481b033</originalsourceid><addsrcrecordid>eNo9kDlPw0AUhLcAiRDoKbejMnlvL5syirikSDRQr57tXdtRfGg3YMKvJ8aIajSj0Yz0MXaDcIeQZSs0qUoQtFlR7pXPz9jiP7pglzHuAAyCkAum17x1bWjiofl0vKWBj82h5kXvvqasq3hRUx85dSWvj4MLv_aKnXvaR3f9p0v2_vjwtnlOtq9PL5v1NilEqg9JoXLKiZRSArRX5T1qhVQaUaYKSDt0eWZIS0feeZ1KL4T2Mk0RVYY5SLlkt_PuSJ2nrrK7_iN0p0f7XY176wQIRARpTk2Ym0XoYwzO2yE0LYWjRbATFDsRsBMBO0ORPxJ0VzY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A memristive map with coexisting chaos and hyperchaos</title><source>IOP Publishing Journals</source><creator>Kong, Sixiao ; Li, Chunbiao ; He, Shaobo ; Çiçek, Serdar ; Lai, Qiang</creator><creatorcontrib>Kong, Sixiao ; Li, Chunbiao ; He, Shaobo ; Çiçek, Serdar ; Lai, Qiang</creatorcontrib><description>By introducing a discrete memristor and periodic sinusoidal functions, a two-dimensional map with coexisting chaos and hyperchaos is constructed. Various coexisting chaotic and hyperchaotic attractors under different Lyapunov exponents are firstly found in this discrete map, along with which other regimes of coexistence such as coexisting chaos, quasi-periodic oscillation, and discrete periodic points are also captured. The hyperchaotic attractors can be flexibly controlled to be unipolar or bipolar by newly embedded constants meanwhile the amplitude can also be controlled in combination with those coexisting attractors. Based on the nonlinear auto-regressive model with exogenous inputs (NARX) for neural network, the dynamics of the memristive map is well predicted, which provides a potential passage in artificial intelligence-based applications.</description><identifier>ISSN: 1674-1056</identifier><identifier>DOI: 10.1088/1674-1056/abf4fb</identifier><language>eng</language><publisher>School of Artificial Intelligence,Nanjing University of Information Science & Technology,Nanjing 210044,China%School of Physics and Electronics,Central South University,Changsha 410083,China%Department of Electronic & Automation,Vocational School of Hac(i)bekta(s),Nev(s)ehir Hac(i) Bekta(s) Veli University,Hac(i)bekta(s) 50800,Nev(s)ehir,Turkey%School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China</publisher><ispartof>Chinese physics B, 2021-11, Vol.30 (11), p.110502-332</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-c4babaa444205f4d91541ad62d740a5e1eb86a53eafef573f225f37711481b033</citedby><cites>FETCH-LOGICAL-c275t-c4babaa444205f4d91541ad62d740a5e1eb86a53eafef573f225f37711481b033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kong, Sixiao</creatorcontrib><creatorcontrib>Li, Chunbiao</creatorcontrib><creatorcontrib>He, Shaobo</creatorcontrib><creatorcontrib>Çiçek, Serdar</creatorcontrib><creatorcontrib>Lai, Qiang</creatorcontrib><title>A memristive map with coexisting chaos and hyperchaos</title><title>Chinese physics B</title><description>By introducing a discrete memristor and periodic sinusoidal functions, a two-dimensional map with coexisting chaos and hyperchaos is constructed. Various coexisting chaotic and hyperchaotic attractors under different Lyapunov exponents are firstly found in this discrete map, along with which other regimes of coexistence such as coexisting chaos, quasi-periodic oscillation, and discrete periodic points are also captured. The hyperchaotic attractors can be flexibly controlled to be unipolar or bipolar by newly embedded constants meanwhile the amplitude can also be controlled in combination with those coexisting attractors. Based on the nonlinear auto-regressive model with exogenous inputs (NARX) for neural network, the dynamics of the memristive map is well predicted, which provides a potential passage in artificial intelligence-based applications.</description><issn>1674-1056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kDlPw0AUhLcAiRDoKbejMnlvL5syirikSDRQr57tXdtRfGg3YMKvJ8aIajSj0Yz0MXaDcIeQZSs0qUoQtFlR7pXPz9jiP7pglzHuAAyCkAum17x1bWjiofl0vKWBj82h5kXvvqasq3hRUx85dSWvj4MLv_aKnXvaR3f9p0v2_vjwtnlOtq9PL5v1NilEqg9JoXLKiZRSArRX5T1qhVQaUaYKSDt0eWZIS0feeZ1KL4T2Mk0RVYY5SLlkt_PuSJ2nrrK7_iN0p0f7XY176wQIRARpTk2Ym0XoYwzO2yE0LYWjRbATFDsRsBMBO0ORPxJ0VzY</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Kong, Sixiao</creator><creator>Li, Chunbiao</creator><creator>He, Shaobo</creator><creator>Çiçek, Serdar</creator><creator>Lai, Qiang</creator><general>School of Artificial Intelligence,Nanjing University of Information Science & Technology,Nanjing 210044,China%School of Physics and Electronics,Central South University,Changsha 410083,China%Department of Electronic & Automation,Vocational School of Hac(i)bekta(s),Nev(s)ehir Hac(i) Bekta(s) Veli University,Hac(i)bekta(s) 50800,Nev(s)ehir,Turkey%School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China</general><general>Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET),Nanjing University of Information Science & Technology,Nanjing 210044,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20211101</creationdate><title>A memristive map with coexisting chaos and hyperchaos</title><author>Kong, Sixiao ; Li, Chunbiao ; He, Shaobo ; Çiçek, Serdar ; Lai, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-c4babaa444205f4d91541ad62d740a5e1eb86a53eafef573f225f37711481b033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Sixiao</creatorcontrib><creatorcontrib>Li, Chunbiao</creatorcontrib><creatorcontrib>He, Shaobo</creatorcontrib><creatorcontrib>Çiçek, Serdar</creatorcontrib><creatorcontrib>Lai, Qiang</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Sixiao</au><au>Li, Chunbiao</au><au>He, Shaobo</au><au>Çiçek, Serdar</au><au>Lai, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A memristive map with coexisting chaos and hyperchaos</atitle><jtitle>Chinese physics B</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>30</volume><issue>11</issue><spage>110502</spage><epage>332</epage><pages>110502-332</pages><issn>1674-1056</issn><abstract>By introducing a discrete memristor and periodic sinusoidal functions, a two-dimensional map with coexisting chaos and hyperchaos is constructed. Various coexisting chaotic and hyperchaotic attractors under different Lyapunov exponents are firstly found in this discrete map, along with which other regimes of coexistence such as coexisting chaos, quasi-periodic oscillation, and discrete periodic points are also captured. The hyperchaotic attractors can be flexibly controlled to be unipolar or bipolar by newly embedded constants meanwhile the amplitude can also be controlled in combination with those coexisting attractors. Based on the nonlinear auto-regressive model with exogenous inputs (NARX) for neural network, the dynamics of the memristive map is well predicted, which provides a potential passage in artificial intelligence-based applications.</abstract><pub>School of Artificial Intelligence,Nanjing University of Information Science & Technology,Nanjing 210044,China%School of Physics and Electronics,Central South University,Changsha 410083,China%Department of Electronic & Automation,Vocational School of Hac(i)bekta(s),Nev(s)ehir Hac(i) Bekta(s) Veli University,Hac(i)bekta(s) 50800,Nev(s)ehir,Turkey%School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China</pub><doi>10.1088/1674-1056/abf4fb</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2021-11, Vol.30 (11), p.110502-332 |
issn | 1674-1056 |
language | eng |
recordid | cdi_wanfang_journals_zgwl_e202111036 |
source | IOP Publishing Journals |
title | A memristive map with coexisting chaos and hyperchaos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20memristive%20map%20with%20coexisting%20chaos%20and%20hyperchaos&rft.jtitle=Chinese%20physics%20B&rft.au=Kong,%20Sixiao&rft.date=2021-11-01&rft.volume=30&rft.issue=11&rft.spage=110502&rft.epage=332&rft.pages=110502-332&rft.issn=1674-1056&rft_id=info:doi/10.1088/1674-1056/abf4fb&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202111036%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202111036&rfr_iscdi=true |