A memristive map with coexisting chaos and hyperchaos

By introducing a discrete memristor and periodic sinusoidal functions, a two-dimensional map with coexisting chaos and hyperchaos is constructed. Various coexisting chaotic and hyperchaotic attractors under different Lyapunov exponents are firstly found in this discrete map, along with which other r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2021-11, Vol.30 (11), p.110502-332
Hauptverfasser: Kong, Sixiao, Li, Chunbiao, He, Shaobo, Çiçek, Serdar, Lai, Qiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue 11
container_start_page 110502
container_title Chinese physics B
container_volume 30
creator Kong, Sixiao
Li, Chunbiao
He, Shaobo
Çiçek, Serdar
Lai, Qiang
description By introducing a discrete memristor and periodic sinusoidal functions, a two-dimensional map with coexisting chaos and hyperchaos is constructed. Various coexisting chaotic and hyperchaotic attractors under different Lyapunov exponents are firstly found in this discrete map, along with which other regimes of coexistence such as coexisting chaos, quasi-periodic oscillation, and discrete periodic points are also captured. The hyperchaotic attractors can be flexibly controlled to be unipolar or bipolar by newly embedded constants meanwhile the amplitude can also be controlled in combination with those coexisting attractors. Based on the nonlinear auto-regressive model with exogenous inputs (NARX) for neural network, the dynamics of the memristive map is well predicted, which provides a potential passage in artificial intelligence-based applications.
doi_str_mv 10.1088/1674-1056/abf4fb
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zgwl_e202111036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202111036</wanfj_id><sourcerecordid>zgwl_e202111036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-c4babaa444205f4d91541ad62d740a5e1eb86a53eafef573f225f37711481b033</originalsourceid><addsrcrecordid>eNo9kDlPw0AUhLcAiRDoKbejMnlvL5syirikSDRQr57tXdtRfGg3YMKvJ8aIajSj0Yz0MXaDcIeQZSs0qUoQtFlR7pXPz9jiP7pglzHuAAyCkAum17x1bWjiofl0vKWBj82h5kXvvqasq3hRUx85dSWvj4MLv_aKnXvaR3f9p0v2_vjwtnlOtq9PL5v1NilEqg9JoXLKiZRSArRX5T1qhVQaUaYKSDt0eWZIS0feeZ1KL4T2Mk0RVYY5SLlkt_PuSJ2nrrK7_iN0p0f7XY176wQIRARpTk2Ym0XoYwzO2yE0LYWjRbATFDsRsBMBO0ORPxJ0VzY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A memristive map with coexisting chaos and hyperchaos</title><source>IOP Publishing Journals</source><creator>Kong, Sixiao ; Li, Chunbiao ; He, Shaobo ; Çiçek, Serdar ; Lai, Qiang</creator><creatorcontrib>Kong, Sixiao ; Li, Chunbiao ; He, Shaobo ; Çiçek, Serdar ; Lai, Qiang</creatorcontrib><description>By introducing a discrete memristor and periodic sinusoidal functions, a two-dimensional map with coexisting chaos and hyperchaos is constructed. Various coexisting chaotic and hyperchaotic attractors under different Lyapunov exponents are firstly found in this discrete map, along with which other regimes of coexistence such as coexisting chaos, quasi-periodic oscillation, and discrete periodic points are also captured. The hyperchaotic attractors can be flexibly controlled to be unipolar or bipolar by newly embedded constants meanwhile the amplitude can also be controlled in combination with those coexisting attractors. Based on the nonlinear auto-regressive model with exogenous inputs (NARX) for neural network, the dynamics of the memristive map is well predicted, which provides a potential passage in artificial intelligence-based applications.</description><identifier>ISSN: 1674-1056</identifier><identifier>DOI: 10.1088/1674-1056/abf4fb</identifier><language>eng</language><publisher>School of Artificial Intelligence,Nanjing University of Information Science &amp; Technology,Nanjing 210044,China%School of Physics and Electronics,Central South University,Changsha 410083,China%Department of Electronic &amp; Automation,Vocational School of Hac(i)bekta(s),Nev(s)ehir Hac(i) Bekta(s) Veli University,Hac(i)bekta(s) 50800,Nev(s)ehir,Turkey%School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China</publisher><ispartof>Chinese physics B, 2021-11, Vol.30 (11), p.110502-332</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-c4babaa444205f4d91541ad62d740a5e1eb86a53eafef573f225f37711481b033</citedby><cites>FETCH-LOGICAL-c275t-c4babaa444205f4d91541ad62d740a5e1eb86a53eafef573f225f37711481b033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kong, Sixiao</creatorcontrib><creatorcontrib>Li, Chunbiao</creatorcontrib><creatorcontrib>He, Shaobo</creatorcontrib><creatorcontrib>Çiçek, Serdar</creatorcontrib><creatorcontrib>Lai, Qiang</creatorcontrib><title>A memristive map with coexisting chaos and hyperchaos</title><title>Chinese physics B</title><description>By introducing a discrete memristor and periodic sinusoidal functions, a two-dimensional map with coexisting chaos and hyperchaos is constructed. Various coexisting chaotic and hyperchaotic attractors under different Lyapunov exponents are firstly found in this discrete map, along with which other regimes of coexistence such as coexisting chaos, quasi-periodic oscillation, and discrete periodic points are also captured. The hyperchaotic attractors can be flexibly controlled to be unipolar or bipolar by newly embedded constants meanwhile the amplitude can also be controlled in combination with those coexisting attractors. Based on the nonlinear auto-regressive model with exogenous inputs (NARX) for neural network, the dynamics of the memristive map is well predicted, which provides a potential passage in artificial intelligence-based applications.</description><issn>1674-1056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kDlPw0AUhLcAiRDoKbejMnlvL5syirikSDRQr57tXdtRfGg3YMKvJ8aIajSj0Yz0MXaDcIeQZSs0qUoQtFlR7pXPz9jiP7pglzHuAAyCkAum17x1bWjiofl0vKWBj82h5kXvvqasq3hRUx85dSWvj4MLv_aKnXvaR3f9p0v2_vjwtnlOtq9PL5v1NilEqg9JoXLKiZRSArRX5T1qhVQaUaYKSDt0eWZIS0feeZ1KL4T2Mk0RVYY5SLlkt_PuSJ2nrrK7_iN0p0f7XY176wQIRARpTk2Ym0XoYwzO2yE0LYWjRbATFDsRsBMBO0ORPxJ0VzY</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Kong, Sixiao</creator><creator>Li, Chunbiao</creator><creator>He, Shaobo</creator><creator>Çiçek, Serdar</creator><creator>Lai, Qiang</creator><general>School of Artificial Intelligence,Nanjing University of Information Science &amp; Technology,Nanjing 210044,China%School of Physics and Electronics,Central South University,Changsha 410083,China%Department of Electronic &amp; Automation,Vocational School of Hac(i)bekta(s),Nev(s)ehir Hac(i) Bekta(s) Veli University,Hac(i)bekta(s) 50800,Nev(s)ehir,Turkey%School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China</general><general>Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET),Nanjing University of Information Science &amp; Technology,Nanjing 210044,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20211101</creationdate><title>A memristive map with coexisting chaos and hyperchaos</title><author>Kong, Sixiao ; Li, Chunbiao ; He, Shaobo ; Çiçek, Serdar ; Lai, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-c4babaa444205f4d91541ad62d740a5e1eb86a53eafef573f225f37711481b033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Sixiao</creatorcontrib><creatorcontrib>Li, Chunbiao</creatorcontrib><creatorcontrib>He, Shaobo</creatorcontrib><creatorcontrib>Çiçek, Serdar</creatorcontrib><creatorcontrib>Lai, Qiang</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Sixiao</au><au>Li, Chunbiao</au><au>He, Shaobo</au><au>Çiçek, Serdar</au><au>Lai, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A memristive map with coexisting chaos and hyperchaos</atitle><jtitle>Chinese physics B</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>30</volume><issue>11</issue><spage>110502</spage><epage>332</epage><pages>110502-332</pages><issn>1674-1056</issn><abstract>By introducing a discrete memristor and periodic sinusoidal functions, a two-dimensional map with coexisting chaos and hyperchaos is constructed. Various coexisting chaotic and hyperchaotic attractors under different Lyapunov exponents are firstly found in this discrete map, along with which other regimes of coexistence such as coexisting chaos, quasi-periodic oscillation, and discrete periodic points are also captured. The hyperchaotic attractors can be flexibly controlled to be unipolar or bipolar by newly embedded constants meanwhile the amplitude can also be controlled in combination with those coexisting attractors. Based on the nonlinear auto-regressive model with exogenous inputs (NARX) for neural network, the dynamics of the memristive map is well predicted, which provides a potential passage in artificial intelligence-based applications.</abstract><pub>School of Artificial Intelligence,Nanjing University of Information Science &amp; Technology,Nanjing 210044,China%School of Physics and Electronics,Central South University,Changsha 410083,China%Department of Electronic &amp; Automation,Vocational School of Hac(i)bekta(s),Nev(s)ehir Hac(i) Bekta(s) Veli University,Hac(i)bekta(s) 50800,Nev(s)ehir,Turkey%School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China</pub><doi>10.1088/1674-1056/abf4fb</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2021-11, Vol.30 (11), p.110502-332
issn 1674-1056
language eng
recordid cdi_wanfang_journals_zgwl_e202111036
source IOP Publishing Journals
title A memristive map with coexisting chaos and hyperchaos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20memristive%20map%20with%20coexisting%20chaos%20and%20hyperchaos&rft.jtitle=Chinese%20physics%20B&rft.au=Kong,%20Sixiao&rft.date=2021-11-01&rft.volume=30&rft.issue=11&rft.spage=110502&rft.epage=332&rft.pages=110502-332&rft.issn=1674-1056&rft_id=info:doi/10.1088/1674-1056/abf4fb&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202111036%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202111036&rfr_iscdi=true