Detection of influential nodes with multi-scale information

The identification of influential nodes in complex networks is one of the most exciting topics in network science. The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective. We study the structural properties of networks in depth and extend t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2021-07, Vol.30 (8), p.88902-664
Hauptverfasser: Wang, Jing-En, Liu, San-Yang, Aljmiai, Ahmed, Bai, Yi-Guang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 664
container_issue 8
container_start_page 88902
container_title Chinese physics B
container_volume 30
creator Wang, Jing-En
Liu, San-Yang
Aljmiai, Ahmed
Bai, Yi-Guang
description The identification of influential nodes in complex networks is one of the most exciting topics in network science. The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective. We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale. In particular, one novel position parameter based on node transmission efficiency is proposed, which mainly depends on the shortest distances from target nodes to high-degree nodes. In this regard, the novel multi-scale information importance (MSII) method is proposed to better identify the crucial nodes by combining the network’s local connectivity and global position information. In simulation comparisons, five state-of-the-art algorithms, i.e. the neighbor nodes degree algorithm (NND), betweenness centrality, closeness centrality, Katz centrality and the k -shell decomposition method, are selected to compare with our MSII. The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks.
doi_str_mv 10.1088/1674-1056/abff2d
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zgwl_e202108083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202108083</wanfj_id><sourcerecordid>zgwl_e202108083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-93e0aa9be477da50edc0e7149a3da1bc0df50498d3af279a6110dd8f37929463</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRj2ARCnsjNmYQs92EsdiQgUKUiWW7tYltksqx0G2owh-PY2CmE769O4-3SPkjsIDhbre0EoUOYWy2mBjLdMXZPUfXZHrGE8AFQXGV-Tx2STTpm7w2WCzzls3Gp86dJkftInZ1KXPrB9d6vLYojMzMoQe540bcmnRRXP7N9fk8Ppy2L7l-4_d-_Zpn7dMlCmX3ACibEwhhMYSjG7BCFpI5Bpp04K2JRSy1hwtExIrSkHr2nIhmSwqvib3y9kJvUV_VKdhDP5cqH6Ok1OGATt_DTU_k7CQbRhiDMaqr9D1GL4VBTWbUbMGNWtQixn-C7lfWe8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detection of influential nodes with multi-scale information</title><source>IOP Publishing Journals</source><creator>Wang, Jing-En ; Liu, San-Yang ; Aljmiai, Ahmed ; Bai, Yi-Guang</creator><creatorcontrib>Wang, Jing-En ; Liu, San-Yang ; Aljmiai, Ahmed ; Bai, Yi-Guang</creatorcontrib><description>The identification of influential nodes in complex networks is one of the most exciting topics in network science. The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective. We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale. In particular, one novel position parameter based on node transmission efficiency is proposed, which mainly depends on the shortest distances from target nodes to high-degree nodes. In this regard, the novel multi-scale information importance (MSII) method is proposed to better identify the crucial nodes by combining the network’s local connectivity and global position information. In simulation comparisons, five state-of-the-art algorithms, i.e. the neighbor nodes degree algorithm (NND), betweenness centrality, closeness centrality, Katz centrality and the k -shell decomposition method, are selected to compare with our MSII. The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks.</description><identifier>ISSN: 1674-1056</identifier><identifier>DOI: 10.1088/1674-1056/abff2d</identifier><language>eng</language><publisher>School of Mathematics and Statistics,Xidian University,Xi'an 710071,China%David R.Cheriton School of Computer Science,University of Waterloo,Canada</publisher><ispartof>Chinese physics B, 2021-07, Vol.30 (8), p.88902-664</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-93e0aa9be477da50edc0e7149a3da1bc0df50498d3af279a6110dd8f37929463</citedby><cites>FETCH-LOGICAL-c275t-93e0aa9be477da50edc0e7149a3da1bc0df50498d3af279a6110dd8f37929463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Jing-En</creatorcontrib><creatorcontrib>Liu, San-Yang</creatorcontrib><creatorcontrib>Aljmiai, Ahmed</creatorcontrib><creatorcontrib>Bai, Yi-Guang</creatorcontrib><title>Detection of influential nodes with multi-scale information</title><title>Chinese physics B</title><description>The identification of influential nodes in complex networks is one of the most exciting topics in network science. The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective. We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale. In particular, one novel position parameter based on node transmission efficiency is proposed, which mainly depends on the shortest distances from target nodes to high-degree nodes. In this regard, the novel multi-scale information importance (MSII) method is proposed to better identify the crucial nodes by combining the network’s local connectivity and global position information. In simulation comparisons, five state-of-the-art algorithms, i.e. the neighbor nodes degree algorithm (NND), betweenness centrality, closeness centrality, Katz centrality and the k -shell decomposition method, are selected to compare with our MSII. The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks.</description><issn>1674-1056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRj2ARCnsjNmYQs92EsdiQgUKUiWW7tYltksqx0G2owh-PY2CmE769O4-3SPkjsIDhbre0EoUOYWy2mBjLdMXZPUfXZHrGE8AFQXGV-Tx2STTpm7w2WCzzls3Gp86dJkftInZ1KXPrB9d6vLYojMzMoQe540bcmnRRXP7N9fk8Ppy2L7l-4_d-_Zpn7dMlCmX3ACibEwhhMYSjG7BCFpI5Bpp04K2JRSy1hwtExIrSkHr2nIhmSwqvib3y9kJvUV_VKdhDP5cqH6Ok1OGATt_DTU_k7CQbRhiDMaqr9D1GL4VBTWbUbMGNWtQixn-C7lfWe8</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wang, Jing-En</creator><creator>Liu, San-Yang</creator><creator>Aljmiai, Ahmed</creator><creator>Bai, Yi-Guang</creator><general>School of Mathematics and Statistics,Xidian University,Xi'an 710071,China%David R.Cheriton School of Computer Science,University of Waterloo,Canada</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20210701</creationdate><title>Detection of influential nodes with multi-scale information</title><author>Wang, Jing-En ; Liu, San-Yang ; Aljmiai, Ahmed ; Bai, Yi-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-93e0aa9be477da50edc0e7149a3da1bc0df50498d3af279a6110dd8f37929463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jing-En</creatorcontrib><creatorcontrib>Liu, San-Yang</creatorcontrib><creatorcontrib>Aljmiai, Ahmed</creatorcontrib><creatorcontrib>Bai, Yi-Guang</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jing-En</au><au>Liu, San-Yang</au><au>Aljmiai, Ahmed</au><au>Bai, Yi-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of influential nodes with multi-scale information</atitle><jtitle>Chinese physics B</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>30</volume><issue>8</issue><spage>88902</spage><epage>664</epage><pages>88902-664</pages><issn>1674-1056</issn><abstract>The identification of influential nodes in complex networks is one of the most exciting topics in network science. The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective. We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale. In particular, one novel position parameter based on node transmission efficiency is proposed, which mainly depends on the shortest distances from target nodes to high-degree nodes. In this regard, the novel multi-scale information importance (MSII) method is proposed to better identify the crucial nodes by combining the network’s local connectivity and global position information. In simulation comparisons, five state-of-the-art algorithms, i.e. the neighbor nodes degree algorithm (NND), betweenness centrality, closeness centrality, Katz centrality and the k -shell decomposition method, are selected to compare with our MSII. The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks.</abstract><pub>School of Mathematics and Statistics,Xidian University,Xi'an 710071,China%David R.Cheriton School of Computer Science,University of Waterloo,Canada</pub><doi>10.1088/1674-1056/abff2d</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2021-07, Vol.30 (8), p.88902-664
issn 1674-1056
language eng
recordid cdi_wanfang_journals_zgwl_e202108083
source IOP Publishing Journals
title Detection of influential nodes with multi-scale information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20influential%20nodes%20with%20multi-scale%20information&rft.jtitle=Chinese%20physics%20B&rft.au=Wang,%20Jing-En&rft.date=2021-07-01&rft.volume=30&rft.issue=8&rft.spage=88902&rft.epage=664&rft.pages=88902-664&rft.issn=1674-1056&rft_id=info:doi/10.1088/1674-1056/abff2d&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202108083%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202108083&rfr_iscdi=true