Detection of influential nodes with multi-scale information
The identification of influential nodes in complex networks is one of the most exciting topics in network science. The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective. We study the structural properties of networks in depth and extend t...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2021-07, Vol.30 (8), p.88902-664 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 664 |
---|---|
container_issue | 8 |
container_start_page | 88902 |
container_title | Chinese physics B |
container_volume | 30 |
creator | Wang, Jing-En Liu, San-Yang Aljmiai, Ahmed Bai, Yi-Guang |
description | The identification of influential nodes in complex networks is one of the most exciting topics in network science. The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective. We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale. In particular, one novel position parameter based on node transmission efficiency is proposed, which mainly depends on the shortest distances from target nodes to high-degree nodes. In this regard, the novel multi-scale information importance (MSII) method is proposed to better identify the crucial nodes by combining the network’s local connectivity and global position information. In simulation comparisons, five state-of-the-art algorithms, i.e. the neighbor nodes degree algorithm (NND), betweenness centrality, closeness centrality, Katz centrality and the
k
-shell decomposition method, are selected to compare with our MSII. The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks. |
doi_str_mv | 10.1088/1674-1056/abff2d |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zgwl_e202108083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202108083</wanfj_id><sourcerecordid>zgwl_e202108083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-93e0aa9be477da50edc0e7149a3da1bc0df50498d3af279a6110dd8f37929463</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRj2ARCnsjNmYQs92EsdiQgUKUiWW7tYltksqx0G2owh-PY2CmE769O4-3SPkjsIDhbre0EoUOYWy2mBjLdMXZPUfXZHrGE8AFQXGV-Tx2STTpm7w2WCzzls3Gp86dJkftInZ1KXPrB9d6vLYojMzMoQe540bcmnRRXP7N9fk8Ppy2L7l-4_d-_Zpn7dMlCmX3ACibEwhhMYSjG7BCFpI5Bpp04K2JRSy1hwtExIrSkHr2nIhmSwqvib3y9kJvUV_VKdhDP5cqH6Ok1OGATt_DTU_k7CQbRhiDMaqr9D1GL4VBTWbUbMGNWtQixn-C7lfWe8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detection of influential nodes with multi-scale information</title><source>IOP Publishing Journals</source><creator>Wang, Jing-En ; Liu, San-Yang ; Aljmiai, Ahmed ; Bai, Yi-Guang</creator><creatorcontrib>Wang, Jing-En ; Liu, San-Yang ; Aljmiai, Ahmed ; Bai, Yi-Guang</creatorcontrib><description>The identification of influential nodes in complex networks is one of the most exciting topics in network science. The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective. We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale. In particular, one novel position parameter based on node transmission efficiency is proposed, which mainly depends on the shortest distances from target nodes to high-degree nodes. In this regard, the novel multi-scale information importance (MSII) method is proposed to better identify the crucial nodes by combining the network’s local connectivity and global position information. In simulation comparisons, five state-of-the-art algorithms, i.e. the neighbor nodes degree algorithm (NND), betweenness centrality, closeness centrality, Katz centrality and the
k
-shell decomposition method, are selected to compare with our MSII. The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks.</description><identifier>ISSN: 1674-1056</identifier><identifier>DOI: 10.1088/1674-1056/abff2d</identifier><language>eng</language><publisher>School of Mathematics and Statistics,Xidian University,Xi'an 710071,China%David R.Cheriton School of Computer Science,University of Waterloo,Canada</publisher><ispartof>Chinese physics B, 2021-07, Vol.30 (8), p.88902-664</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-93e0aa9be477da50edc0e7149a3da1bc0df50498d3af279a6110dd8f37929463</citedby><cites>FETCH-LOGICAL-c275t-93e0aa9be477da50edc0e7149a3da1bc0df50498d3af279a6110dd8f37929463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Jing-En</creatorcontrib><creatorcontrib>Liu, San-Yang</creatorcontrib><creatorcontrib>Aljmiai, Ahmed</creatorcontrib><creatorcontrib>Bai, Yi-Guang</creatorcontrib><title>Detection of influential nodes with multi-scale information</title><title>Chinese physics B</title><description>The identification of influential nodes in complex networks is one of the most exciting topics in network science. The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective. We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale. In particular, one novel position parameter based on node transmission efficiency is proposed, which mainly depends on the shortest distances from target nodes to high-degree nodes. In this regard, the novel multi-scale information importance (MSII) method is proposed to better identify the crucial nodes by combining the network’s local connectivity and global position information. In simulation comparisons, five state-of-the-art algorithms, i.e. the neighbor nodes degree algorithm (NND), betweenness centrality, closeness centrality, Katz centrality and the
k
-shell decomposition method, are selected to compare with our MSII. The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks.</description><issn>1674-1056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRj2ARCnsjNmYQs92EsdiQgUKUiWW7tYltksqx0G2owh-PY2CmE769O4-3SPkjsIDhbre0EoUOYWy2mBjLdMXZPUfXZHrGE8AFQXGV-Tx2STTpm7w2WCzzls3Gp86dJkftInZ1KXPrB9d6vLYojMzMoQe540bcmnRRXP7N9fk8Ppy2L7l-4_d-_Zpn7dMlCmX3ACibEwhhMYSjG7BCFpI5Bpp04K2JRSy1hwtExIrSkHr2nIhmSwqvib3y9kJvUV_VKdhDP5cqH6Ok1OGATt_DTU_k7CQbRhiDMaqr9D1GL4VBTWbUbMGNWtQixn-C7lfWe8</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wang, Jing-En</creator><creator>Liu, San-Yang</creator><creator>Aljmiai, Ahmed</creator><creator>Bai, Yi-Guang</creator><general>School of Mathematics and Statistics,Xidian University,Xi'an 710071,China%David R.Cheriton School of Computer Science,University of Waterloo,Canada</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20210701</creationdate><title>Detection of influential nodes with multi-scale information</title><author>Wang, Jing-En ; Liu, San-Yang ; Aljmiai, Ahmed ; Bai, Yi-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-93e0aa9be477da50edc0e7149a3da1bc0df50498d3af279a6110dd8f37929463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jing-En</creatorcontrib><creatorcontrib>Liu, San-Yang</creatorcontrib><creatorcontrib>Aljmiai, Ahmed</creatorcontrib><creatorcontrib>Bai, Yi-Guang</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jing-En</au><au>Liu, San-Yang</au><au>Aljmiai, Ahmed</au><au>Bai, Yi-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of influential nodes with multi-scale information</atitle><jtitle>Chinese physics B</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>30</volume><issue>8</issue><spage>88902</spage><epage>664</epage><pages>88902-664</pages><issn>1674-1056</issn><abstract>The identification of influential nodes in complex networks is one of the most exciting topics in network science. The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective. We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale. In particular, one novel position parameter based on node transmission efficiency is proposed, which mainly depends on the shortest distances from target nodes to high-degree nodes. In this regard, the novel multi-scale information importance (MSII) method is proposed to better identify the crucial nodes by combining the network’s local connectivity and global position information. In simulation comparisons, five state-of-the-art algorithms, i.e. the neighbor nodes degree algorithm (NND), betweenness centrality, closeness centrality, Katz centrality and the
k
-shell decomposition method, are selected to compare with our MSII. The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks.</abstract><pub>School of Mathematics and Statistics,Xidian University,Xi'an 710071,China%David R.Cheriton School of Computer Science,University of Waterloo,Canada</pub><doi>10.1088/1674-1056/abff2d</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2021-07, Vol.30 (8), p.88902-664 |
issn | 1674-1056 |
language | eng |
recordid | cdi_wanfang_journals_zgwl_e202108083 |
source | IOP Publishing Journals |
title | Detection of influential nodes with multi-scale information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20influential%20nodes%20with%20multi-scale%20information&rft.jtitle=Chinese%20physics%20B&rft.au=Wang,%20Jing-En&rft.date=2021-07-01&rft.volume=30&rft.issue=8&rft.spage=88902&rft.epage=664&rft.pages=88902-664&rft.issn=1674-1056&rft_id=info:doi/10.1088/1674-1056/abff2d&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202108083%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202108083&rfr_iscdi=true |