Quantum algorithm for a set of quantum 2SAT problems

We present a quantum adiabatic algorithm for a set of quantum 2-satisfiability (Q2SAT) problem, which is a generalization of 2-satisfiability (2SAT) problem. For a Q2SAT problem, we construct the Hamiltonian which is similar to that of a Heisenberg chain. All the solutions of the given Q2SAT problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2021-02, Vol.30 (2), p.20308-67
Hauptverfasser: Hu, Yanglin, Zhang, Zhelun, Wu, Biao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue 2
container_start_page 20308
container_title Chinese physics B
container_volume 30
creator Hu, Yanglin
Zhang, Zhelun
Wu, Biao
description We present a quantum adiabatic algorithm for a set of quantum 2-satisfiability (Q2SAT) problem, which is a generalization of 2-satisfiability (2SAT) problem. For a Q2SAT problem, we construct the Hamiltonian which is similar to that of a Heisenberg chain. All the solutions of the given Q2SAT problem span the subspace of the degenerate ground states. The Hamiltonian is adiabatically evolved so that the system stays in the degenerate subspace. Our numerical results suggest that the time complexity of our algorithm is O ( n 3.9 ) for yielding non-trivial solutions for problems with the number of clauses m = dn ( n – 1)/2 ( d ≲ 0.1). We discuss the advantages of our algorithm over the known quantum and classical algorithms.
doi_str_mv 10.1088/1674-1056/abd741
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zgwl_e202102005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202102005</wanfj_id><sourcerecordid>zgwl_e202102005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-5edda40a1e018b3dbdf60f47356ca34fd74588f20481832da8d48a107a2fe2933</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhH0AiVK4c_SNU-j6lZhjVfGoVAkhytnaxHZolcTFTlTBrydRK04rzY5mdz5C7hg8MNB6wfJCZgxUvsDSFpJdkNm_dEWuU9oD5Ay4mBH5PmDXDy3Fpg5x13-11IdIkSbX0-Dp93nNP5ZbeoihbFybbsilxya52_Ock8_np-3qNdu8vaxXy01W8UL1mXLWogRkDpguhS2tz8HLQqi8QiH9-JrS2nOQmmnBLWorNTIokHvHH4WYk_tT7hE7j11t9mGI3XjR_NbHxjgOfGwBoEYnnJxVDClF580h7lqMP4aBmZiYCYCZAJgTE_EHuJFVbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum algorithm for a set of quantum 2SAT problems</title><source>IOP Publishing Journals</source><creator>Hu, Yanglin ; Zhang, Zhelun ; Wu, Biao</creator><creatorcontrib>Hu, Yanglin ; Zhang, Zhelun ; Wu, Biao</creatorcontrib><description>We present a quantum adiabatic algorithm for a set of quantum 2-satisfiability (Q2SAT) problem, which is a generalization of 2-satisfiability (2SAT) problem. For a Q2SAT problem, we construct the Hamiltonian which is similar to that of a Heisenberg chain. All the solutions of the given Q2SAT problem span the subspace of the degenerate ground states. The Hamiltonian is adiabatically evolved so that the system stays in the degenerate subspace. Our numerical results suggest that the time complexity of our algorithm is O ( n 3.9 ) for yielding non-trivial solutions for problems with the number of clauses m = dn ( n – 1)/2 ( d ≲ 0.1). We discuss the advantages of our algorithm over the known quantum and classical algorithms.</description><identifier>ISSN: 1674-1056</identifier><identifier>DOI: 10.1088/1674-1056/abd741</identifier><language>eng</language><publisher>Wilczek Quantum Center,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China</publisher><ispartof>Chinese physics B, 2021-02, Vol.30 (2), p.20308-67</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-5edda40a1e018b3dbdf60f47356ca34fd74588f20481832da8d48a107a2fe2933</citedby><cites>FETCH-LOGICAL-c275t-5edda40a1e018b3dbdf60f47356ca34fd74588f20481832da8d48a107a2fe2933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hu, Yanglin</creatorcontrib><creatorcontrib>Zhang, Zhelun</creatorcontrib><creatorcontrib>Wu, Biao</creatorcontrib><title>Quantum algorithm for a set of quantum 2SAT problems</title><title>Chinese physics B</title><description>We present a quantum adiabatic algorithm for a set of quantum 2-satisfiability (Q2SAT) problem, which is a generalization of 2-satisfiability (2SAT) problem. For a Q2SAT problem, we construct the Hamiltonian which is similar to that of a Heisenberg chain. All the solutions of the given Q2SAT problem span the subspace of the degenerate ground states. The Hamiltonian is adiabatically evolved so that the system stays in the degenerate subspace. Our numerical results suggest that the time complexity of our algorithm is O ( n 3.9 ) for yielding non-trivial solutions for problems with the number of clauses m = dn ( n – 1)/2 ( d ≲ 0.1). We discuss the advantages of our algorithm over the known quantum and classical algorithms.</description><issn>1674-1056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhH0AiVK4c_SNU-j6lZhjVfGoVAkhytnaxHZolcTFTlTBrydRK04rzY5mdz5C7hg8MNB6wfJCZgxUvsDSFpJdkNm_dEWuU9oD5Ay4mBH5PmDXDy3Fpg5x13-11IdIkSbX0-Dp93nNP5ZbeoihbFybbsilxya52_Ock8_np-3qNdu8vaxXy01W8UL1mXLWogRkDpguhS2tz8HLQqi8QiH9-JrS2nOQmmnBLWorNTIokHvHH4WYk_tT7hE7j11t9mGI3XjR_NbHxjgOfGwBoEYnnJxVDClF580h7lqMP4aBmZiYCYCZAJgTE_EHuJFVbg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Hu, Yanglin</creator><creator>Zhang, Zhelun</creator><creator>Wu, Biao</creator><general>Wilczek Quantum Center,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China</general><general>International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China%International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China</general><general>Collaborative Innovation Center of Quantum Matter,Beijing 100871,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20210201</creationdate><title>Quantum algorithm for a set of quantum 2SAT problems</title><author>Hu, Yanglin ; Zhang, Zhelun ; Wu, Biao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-5edda40a1e018b3dbdf60f47356ca34fd74588f20481832da8d48a107a2fe2933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yanglin</creatorcontrib><creatorcontrib>Zhang, Zhelun</creatorcontrib><creatorcontrib>Wu, Biao</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yanglin</au><au>Zhang, Zhelun</au><au>Wu, Biao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum algorithm for a set of quantum 2SAT problems</atitle><jtitle>Chinese physics B</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>30</volume><issue>2</issue><spage>20308</spage><epage>67</epage><pages>20308-67</pages><issn>1674-1056</issn><abstract>We present a quantum adiabatic algorithm for a set of quantum 2-satisfiability (Q2SAT) problem, which is a generalization of 2-satisfiability (2SAT) problem. For a Q2SAT problem, we construct the Hamiltonian which is similar to that of a Heisenberg chain. All the solutions of the given Q2SAT problem span the subspace of the degenerate ground states. The Hamiltonian is adiabatically evolved so that the system stays in the degenerate subspace. Our numerical results suggest that the time complexity of our algorithm is O ( n 3.9 ) for yielding non-trivial solutions for problems with the number of clauses m = dn ( n – 1)/2 ( d ≲ 0.1). We discuss the advantages of our algorithm over the known quantum and classical algorithms.</abstract><pub>Wilczek Quantum Center,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China</pub><doi>10.1088/1674-1056/abd741</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2021-02, Vol.30 (2), p.20308-67
issn 1674-1056
language eng
recordid cdi_wanfang_journals_zgwl_e202102005
source IOP Publishing Journals
title Quantum algorithm for a set of quantum 2SAT problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20algorithm%20for%20a%20set%20of%20quantum%202SAT%20problems&rft.jtitle=Chinese%20physics%20B&rft.au=Hu,%20Yanglin&rft.date=2021-02-01&rft.volume=30&rft.issue=2&rft.spage=20308&rft.epage=67&rft.pages=20308-67&rft.issn=1674-1056&rft_id=info:doi/10.1088/1674-1056/abd741&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202102005%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202102005&rfr_iscdi=true