Quantum algorithm for a set of quantum 2SAT problems
We present a quantum adiabatic algorithm for a set of quantum 2-satisfiability (Q2SAT) problem, which is a generalization of 2-satisfiability (2SAT) problem. For a Q2SAT problem, we construct the Hamiltonian which is similar to that of a Heisenberg chain. All the solutions of the given Q2SAT problem...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2021-02, Vol.30 (2), p.20308-67 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 2 |
container_start_page | 20308 |
container_title | Chinese physics B |
container_volume | 30 |
creator | Hu, Yanglin Zhang, Zhelun Wu, Biao |
description | We present a quantum adiabatic algorithm for a set of quantum 2-satisfiability (Q2SAT) problem, which is a generalization of 2-satisfiability (2SAT) problem. For a Q2SAT problem, we construct the Hamiltonian which is similar to that of a Heisenberg chain. All the solutions of the given Q2SAT problem span the subspace of the degenerate ground states. The Hamiltonian is adiabatically evolved so that the system stays in the degenerate subspace. Our numerical results suggest that the time complexity of our algorithm is
O
(
n
3.9
) for yielding non-trivial solutions for problems with the number of clauses
m
=
dn
(
n
– 1)/2 (
d
≲ 0.1). We discuss the advantages of our algorithm over the known quantum and classical algorithms. |
doi_str_mv | 10.1088/1674-1056/abd741 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zgwl_e202102005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202102005</wanfj_id><sourcerecordid>zgwl_e202102005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-5edda40a1e018b3dbdf60f47356ca34fd74588f20481832da8d48a107a2fe2933</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhH0AiVK4c_SNU-j6lZhjVfGoVAkhytnaxHZolcTFTlTBrydRK04rzY5mdz5C7hg8MNB6wfJCZgxUvsDSFpJdkNm_dEWuU9oD5Ay4mBH5PmDXDy3Fpg5x13-11IdIkSbX0-Dp93nNP5ZbeoihbFybbsilxya52_Ock8_np-3qNdu8vaxXy01W8UL1mXLWogRkDpguhS2tz8HLQqi8QiH9-JrS2nOQmmnBLWorNTIokHvHH4WYk_tT7hE7j11t9mGI3XjR_NbHxjgOfGwBoEYnnJxVDClF580h7lqMP4aBmZiYCYCZAJgTE_EHuJFVbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum algorithm for a set of quantum 2SAT problems</title><source>IOP Publishing Journals</source><creator>Hu, Yanglin ; Zhang, Zhelun ; Wu, Biao</creator><creatorcontrib>Hu, Yanglin ; Zhang, Zhelun ; Wu, Biao</creatorcontrib><description>We present a quantum adiabatic algorithm for a set of quantum 2-satisfiability (Q2SAT) problem, which is a generalization of 2-satisfiability (2SAT) problem. For a Q2SAT problem, we construct the Hamiltonian which is similar to that of a Heisenberg chain. All the solutions of the given Q2SAT problem span the subspace of the degenerate ground states. The Hamiltonian is adiabatically evolved so that the system stays in the degenerate subspace. Our numerical results suggest that the time complexity of our algorithm is
O
(
n
3.9
) for yielding non-trivial solutions for problems with the number of clauses
m
=
dn
(
n
– 1)/2 (
d
≲ 0.1). We discuss the advantages of our algorithm over the known quantum and classical algorithms.</description><identifier>ISSN: 1674-1056</identifier><identifier>DOI: 10.1088/1674-1056/abd741</identifier><language>eng</language><publisher>Wilczek Quantum Center,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China</publisher><ispartof>Chinese physics B, 2021-02, Vol.30 (2), p.20308-67</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-5edda40a1e018b3dbdf60f47356ca34fd74588f20481832da8d48a107a2fe2933</citedby><cites>FETCH-LOGICAL-c275t-5edda40a1e018b3dbdf60f47356ca34fd74588f20481832da8d48a107a2fe2933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hu, Yanglin</creatorcontrib><creatorcontrib>Zhang, Zhelun</creatorcontrib><creatorcontrib>Wu, Biao</creatorcontrib><title>Quantum algorithm for a set of quantum 2SAT problems</title><title>Chinese physics B</title><description>We present a quantum adiabatic algorithm for a set of quantum 2-satisfiability (Q2SAT) problem, which is a generalization of 2-satisfiability (2SAT) problem. For a Q2SAT problem, we construct the Hamiltonian which is similar to that of a Heisenberg chain. All the solutions of the given Q2SAT problem span the subspace of the degenerate ground states. The Hamiltonian is adiabatically evolved so that the system stays in the degenerate subspace. Our numerical results suggest that the time complexity of our algorithm is
O
(
n
3.9
) for yielding non-trivial solutions for problems with the number of clauses
m
=
dn
(
n
– 1)/2 (
d
≲ 0.1). We discuss the advantages of our algorithm over the known quantum and classical algorithms.</description><issn>1674-1056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhH0AiVK4c_SNU-j6lZhjVfGoVAkhytnaxHZolcTFTlTBrydRK04rzY5mdz5C7hg8MNB6wfJCZgxUvsDSFpJdkNm_dEWuU9oD5Ay4mBH5PmDXDy3Fpg5x13-11IdIkSbX0-Dp93nNP5ZbeoihbFybbsilxya52_Ock8_np-3qNdu8vaxXy01W8UL1mXLWogRkDpguhS2tz8HLQqi8QiH9-JrS2nOQmmnBLWorNTIokHvHH4WYk_tT7hE7j11t9mGI3XjR_NbHxjgOfGwBoEYnnJxVDClF580h7lqMP4aBmZiYCYCZAJgTE_EHuJFVbg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Hu, Yanglin</creator><creator>Zhang, Zhelun</creator><creator>Wu, Biao</creator><general>Wilczek Quantum Center,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China</general><general>International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China%International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China</general><general>Collaborative Innovation Center of Quantum Matter,Beijing 100871,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20210201</creationdate><title>Quantum algorithm for a set of quantum 2SAT problems</title><author>Hu, Yanglin ; Zhang, Zhelun ; Wu, Biao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-5edda40a1e018b3dbdf60f47356ca34fd74588f20481832da8d48a107a2fe2933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yanglin</creatorcontrib><creatorcontrib>Zhang, Zhelun</creatorcontrib><creatorcontrib>Wu, Biao</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yanglin</au><au>Zhang, Zhelun</au><au>Wu, Biao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum algorithm for a set of quantum 2SAT problems</atitle><jtitle>Chinese physics B</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>30</volume><issue>2</issue><spage>20308</spage><epage>67</epage><pages>20308-67</pages><issn>1674-1056</issn><abstract>We present a quantum adiabatic algorithm for a set of quantum 2-satisfiability (Q2SAT) problem, which is a generalization of 2-satisfiability (2SAT) problem. For a Q2SAT problem, we construct the Hamiltonian which is similar to that of a Heisenberg chain. All the solutions of the given Q2SAT problem span the subspace of the degenerate ground states. The Hamiltonian is adiabatically evolved so that the system stays in the degenerate subspace. Our numerical results suggest that the time complexity of our algorithm is
O
(
n
3.9
) for yielding non-trivial solutions for problems with the number of clauses
m
=
dn
(
n
– 1)/2 (
d
≲ 0.1). We discuss the advantages of our algorithm over the known quantum and classical algorithms.</abstract><pub>Wilczek Quantum Center,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China</pub><doi>10.1088/1674-1056/abd741</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2021-02, Vol.30 (2), p.20308-67 |
issn | 1674-1056 |
language | eng |
recordid | cdi_wanfang_journals_zgwl_e202102005 |
source | IOP Publishing Journals |
title | Quantum algorithm for a set of quantum 2SAT problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20algorithm%20for%20a%20set%20of%20quantum%202SAT%20problems&rft.jtitle=Chinese%20physics%20B&rft.au=Hu,%20Yanglin&rft.date=2021-02-01&rft.volume=30&rft.issue=2&rft.spage=20308&rft.epage=67&rft.pages=20308-67&rft.issn=1674-1056&rft_id=info:doi/10.1088/1674-1056/abd741&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202102005%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202102005&rfr_iscdi=true |