An artificial neural network for proton identification in HERMES data
The HERMES time-of-flight (TOF) system is used for proton identification, but must be carefully calibrated for systematic biases in the equipment. This paper presents an artificial neural network (ANN) trained to recognize protons from ∧^0 decay using only raw event data such as time delay, momentum...
Gespeichert in:
Veröffentlicht in: | Chinese physics C 2009-03, Vol.33 (3), p.217-223 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223 |
---|---|
container_issue | 3 |
container_start_page | 217 |
container_title | Chinese physics C |
container_volume | 33 |
creator | 王思广 冒亚军 叶红学 |
description | The HERMES time-of-flight (TOF) system is used for proton identification, but must be carefully calibrated for systematic biases in the equipment. This paper presents an artificial neural network (ANN) trained to recognize protons from ∧^0 decay using only raw event data such as time delay, momentum, and trajectory. To avoid the systematic errors associated with Monte Carlo models, we collect a sample of raw experimental data from the year 2000. We presume that when for a positive hadron (assigned one proton mass) and a negative hadron (assigned one π^- mass) the reconstructed invariant mass lies within the ∧^0 resonance, the positive hadron is more likely to be a proton. Such events are assigned an output value of one during the training process; all others were assigned the output value zero.
The trained ANN is capable of identifying protons in independent experimental data, with an efficiency equivalent to the traditional TOF calibration. By modifying the threshold for proton identification, a researcher can trade off between selection efficiency and background rejection power. This simple and convenient method is applicable to similar detection problems in other experiments. |
doi_str_mv | 10.1088/1674-1137/33/3/011 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_iop_p</sourceid><recordid>TN_cdi_wanfang_journals_zgwl_c200903011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>29567709</cqvip_id><wanfj_id>zgwl_c200903011</wanfj_id><sourcerecordid>zgwl_c200903011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-65e0776baa0cc43b070befb1cb03b96ec51edf4330e1d6586dd6846bd7fbff9e3</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EEqXwApwiLohDyDpO7ORYoUCRipD4OVu2Yxe3wQlOqgqenqSpuMCB02ilb3ZnB6FzDNcYsizClCUhxoRFhEQkAowP0ATiNAkJpPEhmvwAx-ikbVcANOl9E1TMXCB8Z41VVlSB0xu_k25b-3Vgah80vu5qF9hSux0mOjuMLpgXTw_Fc1CKTpyiIyOqVp_tdYpeb4uXm3m4eLy7v5ktQkXivAtpqoExKoUApRIigYHURmIlgcicapViXZqEENC4pGlGy5JmCZUlM9KYXJMpuhz3boUzwi35qt5411_kX8ttxVUMkAPpv-_JeCSVr9vWa8Mbb9-F_-QY-FAZHxrhQyOcEE74aApHk62b__FXf_C_ON6Upmcv9oHearf8sH14KdTa2ErzOE8pY5CTb2ILhEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An artificial neural network for proton identification in HERMES data</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>王思广 冒亚军 叶红学</creator><creatorcontrib>王思广 冒亚军 叶红学</creatorcontrib><description>The HERMES time-of-flight (TOF) system is used for proton identification, but must be carefully calibrated for systematic biases in the equipment. This paper presents an artificial neural network (ANN) trained to recognize protons from ∧^0 decay using only raw event data such as time delay, momentum, and trajectory. To avoid the systematic errors associated with Monte Carlo models, we collect a sample of raw experimental data from the year 2000. We presume that when for a positive hadron (assigned one proton mass) and a negative hadron (assigned one π^- mass) the reconstructed invariant mass lies within the ∧^0 resonance, the positive hadron is more likely to be a proton. Such events are assigned an output value of one during the training process; all others were assigned the output value zero.
The trained ANN is capable of identifying protons in independent experimental data, with an efficiency equivalent to the traditional TOF calibration. By modifying the threshold for proton identification, a researcher can trade off between selection efficiency and background rejection power. This simple and convenient method is applicable to similar detection problems in other experiments.</description><identifier>ISSN: 1674-1137</identifier><identifier>EISSN: 0254-3052</identifier><identifier>EISSN: 2058-6132</identifier><identifier>DOI: 10.1088/1674-1137/33/3/011</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>TOF系统 ; 人工神经网络 ; 粒子识别 ; 质子识别</subject><ispartof>Chinese physics C, 2009-03, Vol.33 (3), p.217-223</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-65e0776baa0cc43b070befb1cb03b96ec51edf4330e1d6586dd6846bd7fbff9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/92043A/92043A.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1674-1137/33/3/011/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27928,27929,53834,53914</link.rule.ids></links><search><creatorcontrib>王思广 冒亚军 叶红学</creatorcontrib><title>An artificial neural network for proton identification in HERMES data</title><title>Chinese physics C</title><addtitle>Chinese Physica C</addtitle><description>The HERMES time-of-flight (TOF) system is used for proton identification, but must be carefully calibrated for systematic biases in the equipment. This paper presents an artificial neural network (ANN) trained to recognize protons from ∧^0 decay using only raw event data such as time delay, momentum, and trajectory. To avoid the systematic errors associated with Monte Carlo models, we collect a sample of raw experimental data from the year 2000. We presume that when for a positive hadron (assigned one proton mass) and a negative hadron (assigned one π^- mass) the reconstructed invariant mass lies within the ∧^0 resonance, the positive hadron is more likely to be a proton. Such events are assigned an output value of one during the training process; all others were assigned the output value zero.
The trained ANN is capable of identifying protons in independent experimental data, with an efficiency equivalent to the traditional TOF calibration. By modifying the threshold for proton identification, a researcher can trade off between selection efficiency and background rejection power. This simple and convenient method is applicable to similar detection problems in other experiments.</description><subject>TOF系统</subject><subject>人工神经网络</subject><subject>粒子识别</subject><subject>质子识别</subject><issn>1674-1137</issn><issn>0254-3052</issn><issn>2058-6132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhC0EEqXwApwiLohDyDpO7ORYoUCRipD4OVu2Yxe3wQlOqgqenqSpuMCB02ilb3ZnB6FzDNcYsizClCUhxoRFhEQkAowP0ATiNAkJpPEhmvwAx-ikbVcANOl9E1TMXCB8Z41VVlSB0xu_k25b-3Vgah80vu5qF9hSux0mOjuMLpgXTw_Fc1CKTpyiIyOqVp_tdYpeb4uXm3m4eLy7v5ktQkXivAtpqoExKoUApRIigYHURmIlgcicapViXZqEENC4pGlGy5JmCZUlM9KYXJMpuhz3boUzwi35qt5411_kX8ttxVUMkAPpv-_JeCSVr9vWa8Mbb9-F_-QY-FAZHxrhQyOcEE74aApHk62b__FXf_C_ON6Upmcv9oHearf8sH14KdTa2ErzOE8pY5CTb2ILhEY</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>王思广 冒亚军 叶红学</creator><general>IOP Publishing</general><general>School of Physics and State Key Laboratory of Nuclear Physics & Technology, Peking University, Beijing 100871,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20090301</creationdate><title>An artificial neural network for proton identification in HERMES data</title><author>王思广 冒亚军 叶红学</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-65e0776baa0cc43b070befb1cb03b96ec51edf4330e1d6586dd6846bd7fbff9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>TOF系统</topic><topic>人工神经网络</topic><topic>粒子识别</topic><topic>质子识别</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王思广 冒亚军 叶红学</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王思广 冒亚军 叶红学</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An artificial neural network for proton identification in HERMES data</atitle><jtitle>Chinese physics C</jtitle><addtitle>Chinese Physica C</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>33</volume><issue>3</issue><spage>217</spage><epage>223</epage><pages>217-223</pages><issn>1674-1137</issn><eissn>0254-3052</eissn><eissn>2058-6132</eissn><abstract>The HERMES time-of-flight (TOF) system is used for proton identification, but must be carefully calibrated for systematic biases in the equipment. This paper presents an artificial neural network (ANN) trained to recognize protons from ∧^0 decay using only raw event data such as time delay, momentum, and trajectory. To avoid the systematic errors associated with Monte Carlo models, we collect a sample of raw experimental data from the year 2000. We presume that when for a positive hadron (assigned one proton mass) and a negative hadron (assigned one π^- mass) the reconstructed invariant mass lies within the ∧^0 resonance, the positive hadron is more likely to be a proton. Such events are assigned an output value of one during the training process; all others were assigned the output value zero.
The trained ANN is capable of identifying protons in independent experimental data, with an efficiency equivalent to the traditional TOF calibration. By modifying the threshold for proton identification, a researcher can trade off between selection efficiency and background rejection power. This simple and convenient method is applicable to similar detection problems in other experiments.</abstract><pub>IOP Publishing</pub><doi>10.1088/1674-1137/33/3/011</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1137 |
ispartof | Chinese physics C, 2009-03, Vol.33 (3), p.217-223 |
issn | 1674-1137 0254-3052 2058-6132 |
language | eng |
recordid | cdi_wanfang_journals_zgwl_c200903011 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection |
subjects | TOF系统 人工神经网络 粒子识别 质子识别 |
title | An artificial neural network for proton identification in HERMES data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20artificial%20neural%20network%20for%20proton%20identification%20in%20HERMES%20data&rft.jtitle=Chinese%20physics%20C&rft.au=%E7%8E%8B%E6%80%9D%E5%B9%BF%20%E5%86%92%E4%BA%9A%E5%86%9B%20%E5%8F%B6%E7%BA%A2%E5%AD%A6&rft.date=2009-03-01&rft.volume=33&rft.issue=3&rft.spage=217&rft.epage=223&rft.pages=217-223&rft.issn=1674-1137&rft.eissn=0254-3052&rft_id=info:doi/10.1088/1674-1137/33/3/011&rft_dat=%3Cwanfang_jour_iop_p%3Ezgwl_c200903011%3C/wanfang_jour_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=29567709&rft_wanfj_id=zgwl_c200903011&rfr_iscdi=true |