Endogenous security-aware resource management for digital twin and 6G edge intelligence integrated smart park
The integration of digital twin (DT) and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park. However, the adverse impact of model poisoning attacks on DT model training cannot be ignored. To address this issue, we firstly construct the models of DT mod...
Gespeichert in:
Veröffentlicht in: | China communications 2023-02, Vol.20 (2), p.46-60 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 2 |
container_start_page | 46 |
container_title | China communications |
container_volume | 20 |
creator | Zhang, Sunxuan Yao, Zijia Liao, Haijun Zhou, Zhenyu Chen, Yilong You, Zhaoyang |
description | The integration of digital twin (DT) and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park. However, the adverse impact of model poisoning attacks on DT model training cannot be ignored. To address this issue, we firstly construct the models of DT model training and model poisoning attacks. An optimization problem is formulated to minimize the weighted sum of the DT loss function and DT model training delay. Then, the problem is transformed and solved by the proposed Multi-timescAle endogenouS securiTy-aware DQN-based rEsouRce management algorithm (MASTER) based on DT-assisted state information evaluation and attack detection. MASTER adopts multi-timescale deep Q-learning (DQN) networks to jointly schedule local training epochs and devices. It actively adjusts resource management strategies based on estimated attack probability to achieve endogenous security awareness. Simulation results demonstrate that MASTER has excellent performances in DT model training accuracy and delay. |
doi_str_mv | 10.23919/JCC.2023.02.004 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_RIE</sourceid><recordid>TN_cdi_wanfang_journals_zgtx202302005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10061662</ieee_id><wanfj_id>zgtx202302005</wanfj_id><sourcerecordid>zgtx202302005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-396b5e9d80219c67ddbada4d60676ae83c4c7a731efbb0d04faeabf5b5fda8713</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhTOARFW6MzB4YUy42ImTjCgqBYTEArN1iS9RSuJUtqtSfj0uZeCW00nvvbv7ougmhYSLKq3uX-o64cBFAjwByC6iRSoLEedZVlxFK-e2EKqUUki-iKa10XNPZt475qjd28EfYzygJWbJzXvbEpvQYE8TGc-62TI99IPHkfnDYBgazeSGke6JDcbTOA4hrT0PvUVPmrkJrWc7tJ_X0WWHo6PVX19GH4_r9_opfn3bPNcPr3HLq8zHopJNTpUugadVKwutG9SYaQmykEilaLO2wEKk1DUNaMg6JGy6vMk7jWWRimV0d849oOnQ9GobPjFho_ru_dcJDnCAPOjgrGvt7JylTu3sEK49qhTUL00VaKqTQQFXgWaw3J4tAxH9k4NMpeTiB8mZdS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Endogenous security-aware resource management for digital twin and 6G edge intelligence integrated smart park</title><source>IEL</source><creator>Zhang, Sunxuan ; Yao, Zijia ; Liao, Haijun ; Zhou, Zhenyu ; Chen, Yilong ; You, Zhaoyang</creator><creatorcontrib>Zhang, Sunxuan ; Yao, Zijia ; Liao, Haijun ; Zhou, Zhenyu ; Chen, Yilong ; You, Zhaoyang</creatorcontrib><description>The integration of digital twin (DT) and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park. However, the adverse impact of model poisoning attacks on DT model training cannot be ignored. To address this issue, we firstly construct the models of DT model training and model poisoning attacks. An optimization problem is formulated to minimize the weighted sum of the DT loss function and DT model training delay. Then, the problem is transformed and solved by the proposed Multi-timescAle endogenouS securiTy-aware DQN-based rEsouRce management algorithm (MASTER) based on DT-assisted state information evaluation and attack detection. MASTER adopts multi-timescale deep Q-learning (DQN) networks to jointly schedule local training epochs and devices. It actively adjusts resource management strategies based on estimated attack probability to achieve endogenous security awareness. Simulation results demonstrate that MASTER has excellent performances in DT model training accuracy and delay.</description><identifier>ISSN: 1673-5447</identifier><identifier>DOI: 10.23919/JCC.2023.02.004</identifier><identifier>CODEN: CCHOBE</identifier><language>eng</language><publisher>China Institute of Communications</publisher><subject>6G edge intelligence ; 6G mobile communication ; Computational modeling ; Delays ; digital twin (DT) ; endogenous security awareness ; Load modeling ; Resource management ; Servers ; smart park ; Training</subject><ispartof>China communications, 2023-02, Vol.20 (2), p.46-60</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-396b5e9d80219c67ddbada4d60676ae83c4c7a731efbb0d04faeabf5b5fda8713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgtx/zgtx.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10061662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10061662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Sunxuan</creatorcontrib><creatorcontrib>Yao, Zijia</creatorcontrib><creatorcontrib>Liao, Haijun</creatorcontrib><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Chen, Yilong</creatorcontrib><creatorcontrib>You, Zhaoyang</creatorcontrib><title>Endogenous security-aware resource management for digital twin and 6G edge intelligence integrated smart park</title><title>China communications</title><addtitle>ChinaComm</addtitle><description>The integration of digital twin (DT) and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park. However, the adverse impact of model poisoning attacks on DT model training cannot be ignored. To address this issue, we firstly construct the models of DT model training and model poisoning attacks. An optimization problem is formulated to minimize the weighted sum of the DT loss function and DT model training delay. Then, the problem is transformed and solved by the proposed Multi-timescAle endogenouS securiTy-aware DQN-based rEsouRce management algorithm (MASTER) based on DT-assisted state information evaluation and attack detection. MASTER adopts multi-timescale deep Q-learning (DQN) networks to jointly schedule local training epochs and devices. It actively adjusts resource management strategies based on estimated attack probability to achieve endogenous security awareness. Simulation results demonstrate that MASTER has excellent performances in DT model training accuracy and delay.</description><subject>6G edge intelligence</subject><subject>6G mobile communication</subject><subject>Computational modeling</subject><subject>Delays</subject><subject>digital twin (DT)</subject><subject>endogenous security awareness</subject><subject>Load modeling</subject><subject>Resource management</subject><subject>Servers</subject><subject>smart park</subject><subject>Training</subject><issn>1673-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhTOARFW6MzB4YUy42ImTjCgqBYTEArN1iS9RSuJUtqtSfj0uZeCW00nvvbv7ougmhYSLKq3uX-o64cBFAjwByC6iRSoLEedZVlxFK-e2EKqUUki-iKa10XNPZt475qjd28EfYzygJWbJzXvbEpvQYE8TGc-62TI99IPHkfnDYBgazeSGke6JDcbTOA4hrT0PvUVPmrkJrWc7tJ_X0WWHo6PVX19GH4_r9_opfn3bPNcPr3HLq8zHopJNTpUugadVKwutG9SYaQmykEilaLO2wEKk1DUNaMg6JGy6vMk7jWWRimV0d849oOnQ9GobPjFho_ru_dcJDnCAPOjgrGvt7JylTu3sEK49qhTUL00VaKqTQQFXgWaw3J4tAxH9k4NMpeTiB8mZdS0</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhang, Sunxuan</creator><creator>Yao, Zijia</creator><creator>Liao, Haijun</creator><creator>Zhou, Zhenyu</creator><creator>Chen, Yilong</creator><creator>You, Zhaoyang</creator><general>China Institute of Communications</general><general>State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(North China Electric Power University),Beijing 102206,China%Power Dispatching and Control Center of State Grid Shanghai Municipal Electric Power Company,Shanghai 200122,China</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230201</creationdate><title>Endogenous security-aware resource management for digital twin and 6G edge intelligence integrated smart park</title><author>Zhang, Sunxuan ; Yao, Zijia ; Liao, Haijun ; Zhou, Zhenyu ; Chen, Yilong ; You, Zhaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-396b5e9d80219c67ddbada4d60676ae83c4c7a731efbb0d04faeabf5b5fda8713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>6G edge intelligence</topic><topic>6G mobile communication</topic><topic>Computational modeling</topic><topic>Delays</topic><topic>digital twin (DT)</topic><topic>endogenous security awareness</topic><topic>Load modeling</topic><topic>Resource management</topic><topic>Servers</topic><topic>smart park</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Sunxuan</creatorcontrib><creatorcontrib>Yao, Zijia</creatorcontrib><creatorcontrib>Liao, Haijun</creatorcontrib><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Chen, Yilong</creatorcontrib><creatorcontrib>You, Zhaoyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>China communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Sunxuan</au><au>Yao, Zijia</au><au>Liao, Haijun</au><au>Zhou, Zhenyu</au><au>Chen, Yilong</au><au>You, Zhaoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endogenous security-aware resource management for digital twin and 6G edge intelligence integrated smart park</atitle><jtitle>China communications</jtitle><stitle>ChinaComm</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>20</volume><issue>2</issue><spage>46</spage><epage>60</epage><pages>46-60</pages><issn>1673-5447</issn><coden>CCHOBE</coden><abstract>The integration of digital twin (DT) and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park. However, the adverse impact of model poisoning attacks on DT model training cannot be ignored. To address this issue, we firstly construct the models of DT model training and model poisoning attacks. An optimization problem is formulated to minimize the weighted sum of the DT loss function and DT model training delay. Then, the problem is transformed and solved by the proposed Multi-timescAle endogenouS securiTy-aware DQN-based rEsouRce management algorithm (MASTER) based on DT-assisted state information evaluation and attack detection. MASTER adopts multi-timescale deep Q-learning (DQN) networks to jointly schedule local training epochs and devices. It actively adjusts resource management strategies based on estimated attack probability to achieve endogenous security awareness. Simulation results demonstrate that MASTER has excellent performances in DT model training accuracy and delay.</abstract><pub>China Institute of Communications</pub><doi>10.23919/JCC.2023.02.004</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1673-5447 |
ispartof | China communications, 2023-02, Vol.20 (2), p.46-60 |
issn | 1673-5447 |
language | eng |
recordid | cdi_wanfang_journals_zgtx202302005 |
source | IEL |
subjects | 6G edge intelligence 6G mobile communication Computational modeling Delays digital twin (DT) endogenous security awareness Load modeling Resource management Servers smart park Training |
title | Endogenous security-aware resource management for digital twin and 6G edge intelligence integrated smart park |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endogenous%20security-aware%20resource%20management%20for%20digital%20twin%20and%206G%20edge%20intelligence%20integrated%20smart%20park&rft.jtitle=China%20communications&rft.au=Zhang,%20Sunxuan&rft.date=2023-02-01&rft.volume=20&rft.issue=2&rft.spage=46&rft.epage=60&rft.pages=46-60&rft.issn=1673-5447&rft.coden=CCHOBE&rft_id=info:doi/10.23919/JCC.2023.02.004&rft_dat=%3Cwanfang_jour_RIE%3Ezgtx202302005%3C/wanfang_jour_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10061662&rft_wanfj_id=zgtx202302005&rfr_iscdi=true |