Endogenous security-aware resource management for digital twin and 6G edge intelligence integrated smart park

The integration of digital twin (DT) and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park. However, the adverse impact of model poisoning attacks on DT model training cannot be ignored. To address this issue, we firstly construct the models of DT mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:China communications 2023-02, Vol.20 (2), p.46-60
Hauptverfasser: Zhang, Sunxuan, Yao, Zijia, Liao, Haijun, Zhou, Zhenyu, Chen, Yilong, You, Zhaoyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 2
container_start_page 46
container_title China communications
container_volume 20
creator Zhang, Sunxuan
Yao, Zijia
Liao, Haijun
Zhou, Zhenyu
Chen, Yilong
You, Zhaoyang
description The integration of digital twin (DT) and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park. However, the adverse impact of model poisoning attacks on DT model training cannot be ignored. To address this issue, we firstly construct the models of DT model training and model poisoning attacks. An optimization problem is formulated to minimize the weighted sum of the DT loss function and DT model training delay. Then, the problem is transformed and solved by the proposed Multi-timescAle endogenouS securiTy-aware DQN-based rEsouRce management algorithm (MASTER) based on DT-assisted state information evaluation and attack detection. MASTER adopts multi-timescale deep Q-learning (DQN) networks to jointly schedule local training epochs and devices. It actively adjusts resource management strategies based on estimated attack probability to achieve endogenous security awareness. Simulation results demonstrate that MASTER has excellent performances in DT model training accuracy and delay.
doi_str_mv 10.23919/JCC.2023.02.004
format Article
fullrecord <record><control><sourceid>wanfang_jour_RIE</sourceid><recordid>TN_cdi_wanfang_journals_zgtx202302005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10061662</ieee_id><wanfj_id>zgtx202302005</wanfj_id><sourcerecordid>zgtx202302005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-396b5e9d80219c67ddbada4d60676ae83c4c7a731efbb0d04faeabf5b5fda8713</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhTOARFW6MzB4YUy42ImTjCgqBYTEArN1iS9RSuJUtqtSfj0uZeCW00nvvbv7ougmhYSLKq3uX-o64cBFAjwByC6iRSoLEedZVlxFK-e2EKqUUki-iKa10XNPZt475qjd28EfYzygJWbJzXvbEpvQYE8TGc-62TI99IPHkfnDYBgazeSGke6JDcbTOA4hrT0PvUVPmrkJrWc7tJ_X0WWHo6PVX19GH4_r9_opfn3bPNcPr3HLq8zHopJNTpUugadVKwutG9SYaQmykEilaLO2wEKk1DUNaMg6JGy6vMk7jWWRimV0d849oOnQ9GobPjFho_ru_dcJDnCAPOjgrGvt7JylTu3sEK49qhTUL00VaKqTQQFXgWaw3J4tAxH9k4NMpeTiB8mZdS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Endogenous security-aware resource management for digital twin and 6G edge intelligence integrated smart park</title><source>IEL</source><creator>Zhang, Sunxuan ; Yao, Zijia ; Liao, Haijun ; Zhou, Zhenyu ; Chen, Yilong ; You, Zhaoyang</creator><creatorcontrib>Zhang, Sunxuan ; Yao, Zijia ; Liao, Haijun ; Zhou, Zhenyu ; Chen, Yilong ; You, Zhaoyang</creatorcontrib><description>The integration of digital twin (DT) and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park. However, the adverse impact of model poisoning attacks on DT model training cannot be ignored. To address this issue, we firstly construct the models of DT model training and model poisoning attacks. An optimization problem is formulated to minimize the weighted sum of the DT loss function and DT model training delay. Then, the problem is transformed and solved by the proposed Multi-timescAle endogenouS securiTy-aware DQN-based rEsouRce management algorithm (MASTER) based on DT-assisted state information evaluation and attack detection. MASTER adopts multi-timescale deep Q-learning (DQN) networks to jointly schedule local training epochs and devices. It actively adjusts resource management strategies based on estimated attack probability to achieve endogenous security awareness. Simulation results demonstrate that MASTER has excellent performances in DT model training accuracy and delay.</description><identifier>ISSN: 1673-5447</identifier><identifier>DOI: 10.23919/JCC.2023.02.004</identifier><identifier>CODEN: CCHOBE</identifier><language>eng</language><publisher>China Institute of Communications</publisher><subject>6G edge intelligence ; 6G mobile communication ; Computational modeling ; Delays ; digital twin (DT) ; endogenous security awareness ; Load modeling ; Resource management ; Servers ; smart park ; Training</subject><ispartof>China communications, 2023-02, Vol.20 (2), p.46-60</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-396b5e9d80219c67ddbada4d60676ae83c4c7a731efbb0d04faeabf5b5fda8713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgtx/zgtx.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10061662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10061662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Sunxuan</creatorcontrib><creatorcontrib>Yao, Zijia</creatorcontrib><creatorcontrib>Liao, Haijun</creatorcontrib><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Chen, Yilong</creatorcontrib><creatorcontrib>You, Zhaoyang</creatorcontrib><title>Endogenous security-aware resource management for digital twin and 6G edge intelligence integrated smart park</title><title>China communications</title><addtitle>ChinaComm</addtitle><description>The integration of digital twin (DT) and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park. However, the adverse impact of model poisoning attacks on DT model training cannot be ignored. To address this issue, we firstly construct the models of DT model training and model poisoning attacks. An optimization problem is formulated to minimize the weighted sum of the DT loss function and DT model training delay. Then, the problem is transformed and solved by the proposed Multi-timescAle endogenouS securiTy-aware DQN-based rEsouRce management algorithm (MASTER) based on DT-assisted state information evaluation and attack detection. MASTER adopts multi-timescale deep Q-learning (DQN) networks to jointly schedule local training epochs and devices. It actively adjusts resource management strategies based on estimated attack probability to achieve endogenous security awareness. Simulation results demonstrate that MASTER has excellent performances in DT model training accuracy and delay.</description><subject>6G edge intelligence</subject><subject>6G mobile communication</subject><subject>Computational modeling</subject><subject>Delays</subject><subject>digital twin (DT)</subject><subject>endogenous security awareness</subject><subject>Load modeling</subject><subject>Resource management</subject><subject>Servers</subject><subject>smart park</subject><subject>Training</subject><issn>1673-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhTOARFW6MzB4YUy42ImTjCgqBYTEArN1iS9RSuJUtqtSfj0uZeCW00nvvbv7ougmhYSLKq3uX-o64cBFAjwByC6iRSoLEedZVlxFK-e2EKqUUki-iKa10XNPZt475qjd28EfYzygJWbJzXvbEpvQYE8TGc-62TI99IPHkfnDYBgazeSGke6JDcbTOA4hrT0PvUVPmrkJrWc7tJ_X0WWHo6PVX19GH4_r9_opfn3bPNcPr3HLq8zHopJNTpUugadVKwutG9SYaQmykEilaLO2wEKk1DUNaMg6JGy6vMk7jWWRimV0d849oOnQ9GobPjFho_ru_dcJDnCAPOjgrGvt7JylTu3sEK49qhTUL00VaKqTQQFXgWaw3J4tAxH9k4NMpeTiB8mZdS0</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhang, Sunxuan</creator><creator>Yao, Zijia</creator><creator>Liao, Haijun</creator><creator>Zhou, Zhenyu</creator><creator>Chen, Yilong</creator><creator>You, Zhaoyang</creator><general>China Institute of Communications</general><general>State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(North China Electric Power University),Beijing 102206,China%Power Dispatching and Control Center of State Grid Shanghai Municipal Electric Power Company,Shanghai 200122,China</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230201</creationdate><title>Endogenous security-aware resource management for digital twin and 6G edge intelligence integrated smart park</title><author>Zhang, Sunxuan ; Yao, Zijia ; Liao, Haijun ; Zhou, Zhenyu ; Chen, Yilong ; You, Zhaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-396b5e9d80219c67ddbada4d60676ae83c4c7a731efbb0d04faeabf5b5fda8713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>6G edge intelligence</topic><topic>6G mobile communication</topic><topic>Computational modeling</topic><topic>Delays</topic><topic>digital twin (DT)</topic><topic>endogenous security awareness</topic><topic>Load modeling</topic><topic>Resource management</topic><topic>Servers</topic><topic>smart park</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Sunxuan</creatorcontrib><creatorcontrib>Yao, Zijia</creatorcontrib><creatorcontrib>Liao, Haijun</creatorcontrib><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Chen, Yilong</creatorcontrib><creatorcontrib>You, Zhaoyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>China communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Sunxuan</au><au>Yao, Zijia</au><au>Liao, Haijun</au><au>Zhou, Zhenyu</au><au>Chen, Yilong</au><au>You, Zhaoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endogenous security-aware resource management for digital twin and 6G edge intelligence integrated smart park</atitle><jtitle>China communications</jtitle><stitle>ChinaComm</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>20</volume><issue>2</issue><spage>46</spage><epage>60</epage><pages>46-60</pages><issn>1673-5447</issn><coden>CCHOBE</coden><abstract>The integration of digital twin (DT) and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park. However, the adverse impact of model poisoning attacks on DT model training cannot be ignored. To address this issue, we firstly construct the models of DT model training and model poisoning attacks. An optimization problem is formulated to minimize the weighted sum of the DT loss function and DT model training delay. Then, the problem is transformed and solved by the proposed Multi-timescAle endogenouS securiTy-aware DQN-based rEsouRce management algorithm (MASTER) based on DT-assisted state information evaluation and attack detection. MASTER adopts multi-timescale deep Q-learning (DQN) networks to jointly schedule local training epochs and devices. It actively adjusts resource management strategies based on estimated attack probability to achieve endogenous security awareness. Simulation results demonstrate that MASTER has excellent performances in DT model training accuracy and delay.</abstract><pub>China Institute of Communications</pub><doi>10.23919/JCC.2023.02.004</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1673-5447
ispartof China communications, 2023-02, Vol.20 (2), p.46-60
issn 1673-5447
language eng
recordid cdi_wanfang_journals_zgtx202302005
source IEL
subjects 6G edge intelligence
6G mobile communication
Computational modeling
Delays
digital twin (DT)
endogenous security awareness
Load modeling
Resource management
Servers
smart park
Training
title Endogenous security-aware resource management for digital twin and 6G edge intelligence integrated smart park
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endogenous%20security-aware%20resource%20management%20for%20digital%20twin%20and%206G%20edge%20intelligence%20integrated%20smart%20park&rft.jtitle=China%20communications&rft.au=Zhang,%20Sunxuan&rft.date=2023-02-01&rft.volume=20&rft.issue=2&rft.spage=46&rft.epage=60&rft.pages=46-60&rft.issn=1673-5447&rft.coden=CCHOBE&rft_id=info:doi/10.23919/JCC.2023.02.004&rft_dat=%3Cwanfang_jour_RIE%3Ezgtx202302005%3C/wanfang_jour_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10061662&rft_wanfj_id=zgtx202302005&rfr_iscdi=true