The interplay between artificial intelligence and fog radio access networks

The interplay between artificial intelligence (AI) and fog radio access networks (F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how AI makes F-RANs smarter to better serve mobile devices. Due to the heterogeneity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:China communications 2020-08, Vol.17 (8), p.1-13
Hauptverfasser: Xia, Wenchao, Zhang, Xinruo, Zheng, Gan, Zhang, Jun, Jin, Shi, Zhu, Hongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 8
container_start_page 1
container_title China communications
container_volume 17
creator Xia, Wenchao
Zhang, Xinruo
Zheng, Gan
Zhang, Jun
Jin, Shi
Zhu, Hongbo
description The interplay between artificial intelligence (AI) and fog radio access networks (F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how AI makes F-RANs smarter to better serve mobile devices. Due to the heterogeneity of processing capability, the cloud, fog, and device layers in F-RANs provide hierarchical intelligence via centralized, distributed, and federated learning. In addition, cross-layer learning is also introduced to further reduce the demand for the memory size of the mobile devices. On the other hand, AI provides F-RANs with technologies and methods to deal with massive data and make smarter decisions. Specifically, machine learning tools such as deep neural networks are introduced for data processing, while reinforcement learning (RL) algorithms are adopted for network optimization and decisions. Then, two examples of AI-based applications in F-RANs, i.e., health monitoring and intelligent transportation systems, are presented, followed by a case study of an RL-based caching application in the presence of spatio-temporal unknown content popularity to showcase the potential of applying AI to F-RANs.
doi_str_mv 10.23919/JCC.2020.08.001
format Article
fullrecord <record><control><sourceid>wanfang_jour_RIE</sourceid><recordid>TN_cdi_wanfang_journals_zgtx202008001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9190126</ieee_id><wanfj_id>zgtx202008001</wanfj_id><sourcerecordid>zgtx202008001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b8ac4c13255c2d92a4ad218331283a7d7d8a934c8e962b48b799a9edd11bf0843</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhj2ARFW6I7F4YUzwR5rYI4r4rsRSZutiX4JLcCo7qMCvJ20Rt9xwz3Onewm54CwXUnN9_VTXuWCC5UzljPETMuNlJbNlUVRnZJHShk2lylKWYkae129IfRgxbnv4pg2OO8RAIY6-9dZDfxj2ve8wWKQQHG2HjkZwfqBgLaZEwyQN8T2dk9MW-oSLvz4nr3e36_ohW73cP9Y3q8wKLcesUWALy6VYLq1wWkABTnAlJRdKQuUqp0DLwirUpWgK1VRag0bnOG9apgo5J1fHvTsILYTObIbPGKaL5qcbv_avMzU9PnHsyNk4pBSxNdvoPyB-G87MISszZWX2gmHKHJXLo-IR8R-fSMZFKX8BM6Zm1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The interplay between artificial intelligence and fog radio access networks</title><source>IEEE Electronic Library (IEL)</source><creator>Xia, Wenchao ; Zhang, Xinruo ; Zheng, Gan ; Zhang, Jun ; Jin, Shi ; Zhu, Hongbo</creator><creatorcontrib>Xia, Wenchao ; Zhang, Xinruo ; Zheng, Gan ; Zhang, Jun ; Jin, Shi ; Zhu, Hongbo</creatorcontrib><description>The interplay between artificial intelligence (AI) and fog radio access networks (F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how AI makes F-RANs smarter to better serve mobile devices. Due to the heterogeneity of processing capability, the cloud, fog, and device layers in F-RANs provide hierarchical intelligence via centralized, distributed, and federated learning. In addition, cross-layer learning is also introduced to further reduce the demand for the memory size of the mobile devices. On the other hand, AI provides F-RANs with technologies and methods to deal with massive data and make smarter decisions. Specifically, machine learning tools such as deep neural networks are introduced for data processing, while reinforcement learning (RL) algorithms are adopted for network optimization and decisions. Then, two examples of AI-based applications in F-RANs, i.e., health monitoring and intelligent transportation systems, are presented, followed by a case study of an RL-based caching application in the presence of spatio-temporal unknown content popularity to showcase the potential of applying AI to F-RANs.</description><identifier>ISSN: 1673-5447</identifier><identifier>DOI: 10.23919/JCC.2020.08.001</identifier><identifier>CODEN: CCHOBE</identifier><language>eng</language><publisher>China Institute of Communications</publisher><subject>Artificial intelligence ; artificial intelligence (AI) ; Cloud computing ; Data privacy ; Data processing ; fog radio access network (F-RAN) ; machine learning ; Mobile handsets ; network optimization ; Training ; Wireless communication</subject><ispartof>China communications, 2020-08, Vol.17 (8), p.1-13</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b8ac4c13255c2d92a4ad218331283a7d7d8a934c8e962b48b799a9edd11bf0843</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgtx/zgtx.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9190126$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9190126$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xia, Wenchao</creatorcontrib><creatorcontrib>Zhang, Xinruo</creatorcontrib><creatorcontrib>Zheng, Gan</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Jin, Shi</creatorcontrib><creatorcontrib>Zhu, Hongbo</creatorcontrib><title>The interplay between artificial intelligence and fog radio access networks</title><title>China communications</title><addtitle>ChinaComm</addtitle><description>The interplay between artificial intelligence (AI) and fog radio access networks (F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how AI makes F-RANs smarter to better serve mobile devices. Due to the heterogeneity of processing capability, the cloud, fog, and device layers in F-RANs provide hierarchical intelligence via centralized, distributed, and federated learning. In addition, cross-layer learning is also introduced to further reduce the demand for the memory size of the mobile devices. On the other hand, AI provides F-RANs with technologies and methods to deal with massive data and make smarter decisions. Specifically, machine learning tools such as deep neural networks are introduced for data processing, while reinforcement learning (RL) algorithms are adopted for network optimization and decisions. Then, two examples of AI-based applications in F-RANs, i.e., health monitoring and intelligent transportation systems, are presented, followed by a case study of an RL-based caching application in the presence of spatio-temporal unknown content popularity to showcase the potential of applying AI to F-RANs.</description><subject>Artificial intelligence</subject><subject>artificial intelligence (AI)</subject><subject>Cloud computing</subject><subject>Data privacy</subject><subject>Data processing</subject><subject>fog radio access network (F-RAN)</subject><subject>machine learning</subject><subject>Mobile handsets</subject><subject>network optimization</subject><subject>Training</subject><subject>Wireless communication</subject><issn>1673-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhj2ARFW6I7F4YUzwR5rYI4r4rsRSZutiX4JLcCo7qMCvJ20Rt9xwz3Onewm54CwXUnN9_VTXuWCC5UzljPETMuNlJbNlUVRnZJHShk2lylKWYkae129IfRgxbnv4pg2OO8RAIY6-9dZDfxj2ve8wWKQQHG2HjkZwfqBgLaZEwyQN8T2dk9MW-oSLvz4nr3e36_ohW73cP9Y3q8wKLcesUWALy6VYLq1wWkABTnAlJRdKQuUqp0DLwirUpWgK1VRag0bnOG9apgo5J1fHvTsILYTObIbPGKaL5qcbv_avMzU9PnHsyNk4pBSxNdvoPyB-G87MISszZWX2gmHKHJXLo-IR8R-fSMZFKX8BM6Zm1Q</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Xia, Wenchao</creator><creator>Zhang, Xinruo</creator><creator>Zheng, Gan</creator><creator>Zhang, Jun</creator><creator>Jin, Shi</creator><creator>Zhu, Hongbo</creator><general>China Institute of Communications</general><general>Jiangsu Key Laboratory of Wireless Communications, Nanjing University of Posts and Telecommunications, Nanjing 210003, China</general><general>Engineering Research Center of Health Service System Based on Ubiquitous Wireless Networks, Ministry of Education,Nanjing University of Posts and Telecommunications, Nanjing 210003, China%Department of Computer Science and Electronic Engineering, University of Essex, Colchester CO43SQ, U.K.%Wolfson School of Mechanical Electrical and Manufacturing Engineering, Loughborough University, Leicestershire LE113TU, U.K.%National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200801</creationdate><title>The interplay between artificial intelligence and fog radio access networks</title><author>Xia, Wenchao ; Zhang, Xinruo ; Zheng, Gan ; Zhang, Jun ; Jin, Shi ; Zhu, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b8ac4c13255c2d92a4ad218331283a7d7d8a934c8e962b48b799a9edd11bf0843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>artificial intelligence (AI)</topic><topic>Cloud computing</topic><topic>Data privacy</topic><topic>Data processing</topic><topic>fog radio access network (F-RAN)</topic><topic>machine learning</topic><topic>Mobile handsets</topic><topic>network optimization</topic><topic>Training</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Wenchao</creatorcontrib><creatorcontrib>Zhang, Xinruo</creatorcontrib><creatorcontrib>Zheng, Gan</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Jin, Shi</creatorcontrib><creatorcontrib>Zhu, Hongbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>China communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xia, Wenchao</au><au>Zhang, Xinruo</au><au>Zheng, Gan</au><au>Zhang, Jun</au><au>Jin, Shi</au><au>Zhu, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The interplay between artificial intelligence and fog radio access networks</atitle><jtitle>China communications</jtitle><stitle>ChinaComm</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>17</volume><issue>8</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1673-5447</issn><coden>CCHOBE</coden><abstract>The interplay between artificial intelligence (AI) and fog radio access networks (F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how AI makes F-RANs smarter to better serve mobile devices. Due to the heterogeneity of processing capability, the cloud, fog, and device layers in F-RANs provide hierarchical intelligence via centralized, distributed, and federated learning. In addition, cross-layer learning is also introduced to further reduce the demand for the memory size of the mobile devices. On the other hand, AI provides F-RANs with technologies and methods to deal with massive data and make smarter decisions. Specifically, machine learning tools such as deep neural networks are introduced for data processing, while reinforcement learning (RL) algorithms are adopted for network optimization and decisions. Then, two examples of AI-based applications in F-RANs, i.e., health monitoring and intelligent transportation systems, are presented, followed by a case study of an RL-based caching application in the presence of spatio-temporal unknown content popularity to showcase the potential of applying AI to F-RANs.</abstract><pub>China Institute of Communications</pub><doi>10.23919/JCC.2020.08.001</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1673-5447
ispartof China communications, 2020-08, Vol.17 (8), p.1-13
issn 1673-5447
language eng
recordid cdi_wanfang_journals_zgtx202008001
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
artificial intelligence (AI)
Cloud computing
Data privacy
Data processing
fog radio access network (F-RAN)
machine learning
Mobile handsets
network optimization
Training
Wireless communication
title The interplay between artificial intelligence and fog radio access networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20interplay%20between%20artificial%20intelligence%20and%20fog%20radio%20access%20networks&rft.jtitle=China%20communications&rft.au=Xia,%20Wenchao&rft.date=2020-08-01&rft.volume=17&rft.issue=8&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1673-5447&rft.coden=CCHOBE&rft_id=info:doi/10.23919/JCC.2020.08.001&rft_dat=%3Cwanfang_jour_RIE%3Ezgtx202008001%3C/wanfang_jour_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9190126&rft_wanfj_id=zgtx202008001&rfr_iscdi=true