基于BERT-BiLSTM-CRF的农产品信息文本命名实体识别研究及应用展望
命名实体识别是从农产品信息文本数据中有效抽取信息的关键一步,旨在从非结构化文本中确定与农产品特性相关的命名实体.农业领域的命名实体识别研究大多集中在农业病虫害领域,关于农产品信息文本的实体识别研究较少,通过采用BMES标注的方式对爬虫获取的农产品信息文本数据进行标注,提出融合BERT的BiLSTM-CRF深度学习模型对该文本数据进行实体抽取.将该模型与多种神经网络模型的实验结果比较发现,融合BERT的BiL-STM-CRF模型对农作物、地区、富含营养成分等3种命名实体识别的准确率和召回率分别为82.25%和84.54%,明显优于IDCNN-CRF等神经网络模型,说明该方法能有效识别抽取农产品信...
Gespeichert in:
Veröffentlicht in: | 农业展望 2022, Vol.18 (5), p.105-111 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!