Numerical simulation of high voltage electric pulse comminution of phosphate ore

Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was used to numerically simulate the effect of ore compositions in this study. Regardi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mining science and technology 2015-05, Vol.25 (3), p.473-478
Hauptverfasser: Razavian, Seyed Mohammad, Rezai, Bahram, Irannajad, Mehdi, Ravanji, Mohammad Hasan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was used to numerically simulate the effect of ore compositions in this study. Regarding phos-phate ore particles shape and composition, the effects of mineral composition, particle size, particle shape and electrodes distance were investigated on the electrical field intensity and distribution. The results show that the induced electrical field is significantly dependent on the electrical properties of minerals, the feed particle size and the location of conductive minerals in ores. The angle of material contact sur-face with the discharge electrode is also an important factor in the intensity of electrical field. Moreover, it is found that the specific liberation effect at the disintegration of phosphate ore by electrical pulses is due to the locality of the electrical field at the interface of mineral components of the phosphate ore aggregates with different permittivities. However, the intensity of the electrical field increases with shar-pening the contact angle. Besides, the electrical discharge in the samples is converted to the elec-trohydraulic discharge across the surrounding water by changing the distance between the discharge electrode and sample surface.
ISSN:2095-2686
DOI:10.1016/j.ijmst.2015.03.023