A method for detecting miners based on helmets detection in underground coal mine videos
In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners, This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four...
Gespeichert in:
Veröffentlicht in: | Mining science and technology (China) 2011, Vol.21 (4), p.553-556 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 556 |
---|---|
container_issue | 4 |
container_start_page | 553 |
container_title | Mining science and technology (China) |
container_volume | 21 |
creator | Cai, Limei Qian, Jiansheng |
description | In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners, This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four directional features, modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes. Out experimental results show that this method can detect helmets effectively. The detection rate was 83.7%. |
doi_str_mv | 10.1016/j.mstc.2011.06.016 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zgkydxxb_e201104016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>40361912</cqvip_id><wanfj_id>zgkydxxb_e201104016</wanfj_id><els_id>S1674526411000986</els_id><sourcerecordid>zgkydxxb_e201104016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2776-9c7a0e7972d379c889d4972fb5d686aec2686ad46826b25b0b6d6a58b7f2f98b3</originalsourceid><addsrcrecordid>eNp9kF9PwyAUxYnRxEX3BXzCZ9MKtKNt4suy-C9Z4osmvhEKtx1zBYVtbn56qZ0-yssJN-dwLj-ELihJKaH8epl2Ya1SRihNCU_j6AiNGKMs4YTzYzSivMiTCeP5KRqHsCTxZGVZ0XKEXqe4g_XCadw4jzWsQa2NbXFnLPiAaxlAY2fxAlbRF34dcWIs3lgNvvUuKlZOrn5SeGs0uHCOThq5CjA-6Bl6ubt9nj0k86f7x9l0nihWFDypVCEJFFXBdFZUKm6l83hp6onmJZegWC865yXjNZvUpOaay0lZFw1rqrLOztDV8O6ntI20rVi6jbexUXy1b3u929UCejIkj1yimw1u5V0IHhrx7k0n_V5QInqYYil6mKKPCMLFELoZQhD_sTXgRVAGrAJtfIQhtDP_xy8PnQtn249I9680JxmnFWXZN6-SiPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A method for detecting miners based on helmets detection in underground coal mine videos</title><source>Alma/SFX Local Collection</source><creator>Cai, Limei ; Qian, Jiansheng</creator><creatorcontrib>Cai, Limei ; Qian, Jiansheng</creatorcontrib><description>In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners, This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four directional features, modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes. Out experimental results show that this method can detect helmets effectively. The detection rate was 83.7%.</description><identifier>ISSN: 1674-5264</identifier><identifier>EISSN: 2212-6066</identifier><identifier>DOI: 10.1016/j.mstc.2011.06.016</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Coal mine ; Gaussian model ; Helmet detection ; Human detection ; Image pattern recognition ; 危险区域 ; 地下煤矿 ; 头盔 ; 标准图像 ; 煤矿井下 ; 矿工 ; 自动监测 ; 视频检测</subject><ispartof>Mining science and technology (China), 2011, Vol.21 (4), p.553-556</ispartof><rights>2011</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2776-9c7a0e7972d379c889d4972fb5d686aec2686ad46826b25b0b6d6a58b7f2f98b3</citedby><cites>FETCH-LOGICAL-c2776-9c7a0e7972d379c889d4972fb5d686aec2686ad46826b25b0b6d6a58b7f2f98b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85399A/85399A.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Cai, Limei</creatorcontrib><creatorcontrib>Qian, Jiansheng</creatorcontrib><title>A method for detecting miners based on helmets detection in underground coal mine videos</title><title>Mining science and technology (China)</title><addtitle>Mining Science and Technology</addtitle><description>In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners, This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four directional features, modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes. Out experimental results show that this method can detect helmets effectively. The detection rate was 83.7%.</description><subject>Coal mine</subject><subject>Gaussian model</subject><subject>Helmet detection</subject><subject>Human detection</subject><subject>Image pattern recognition</subject><subject>危险区域</subject><subject>地下煤矿</subject><subject>头盔</subject><subject>标准图像</subject><subject>煤矿井下</subject><subject>矿工</subject><subject>自动监测</subject><subject>视频检测</subject><issn>1674-5264</issn><issn>2212-6066</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kF9PwyAUxYnRxEX3BXzCZ9MKtKNt4suy-C9Z4osmvhEKtx1zBYVtbn56qZ0-yssJN-dwLj-ELihJKaH8epl2Ya1SRihNCU_j6AiNGKMs4YTzYzSivMiTCeP5KRqHsCTxZGVZ0XKEXqe4g_XCadw4jzWsQa2NbXFnLPiAaxlAY2fxAlbRF34dcWIs3lgNvvUuKlZOrn5SeGs0uHCOThq5CjA-6Bl6ubt9nj0k86f7x9l0nihWFDypVCEJFFXBdFZUKm6l83hp6onmJZegWC865yXjNZvUpOaay0lZFw1rqrLOztDV8O6ntI20rVi6jbexUXy1b3u929UCejIkj1yimw1u5V0IHhrx7k0n_V5QInqYYil6mKKPCMLFELoZQhD_sTXgRVAGrAJtfIQhtDP_xy8PnQtn249I9680JxmnFWXZN6-SiPE</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Cai, Limei</creator><creator>Qian, Jiansheng</creator><general>Elsevier B.V</general><general>School of Information and Electrical Engineering. China University of Mining & Technology, Xuzhou 221116, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2011</creationdate><title>A method for detecting miners based on helmets detection in underground coal mine videos</title><author>Cai, Limei ; Qian, Jiansheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2776-9c7a0e7972d379c889d4972fb5d686aec2686ad46826b25b0b6d6a58b7f2f98b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coal mine</topic><topic>Gaussian model</topic><topic>Helmet detection</topic><topic>Human detection</topic><topic>Image pattern recognition</topic><topic>危险区域</topic><topic>地下煤矿</topic><topic>头盔</topic><topic>标准图像</topic><topic>煤矿井下</topic><topic>矿工</topic><topic>自动监测</topic><topic>视频检测</topic><toplevel>online_resources</toplevel><creatorcontrib>Cai, Limei</creatorcontrib><creatorcontrib>Qian, Jiansheng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Mining science and technology (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Limei</au><au>Qian, Jiansheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for detecting miners based on helmets detection in underground coal mine videos</atitle><jtitle>Mining science and technology (China)</jtitle><addtitle>Mining Science and Technology</addtitle><date>2011</date><risdate>2011</risdate><volume>21</volume><issue>4</issue><spage>553</spage><epage>556</epage><pages>553-556</pages><issn>1674-5264</issn><eissn>2212-6066</eissn><abstract>In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners, This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four directional features, modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes. Out experimental results show that this method can detect helmets effectively. The detection rate was 83.7%.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mstc.2011.06.016</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-5264 |
ispartof | Mining science and technology (China), 2011, Vol.21 (4), p.553-556 |
issn | 1674-5264 2212-6066 |
language | eng |
recordid | cdi_wanfang_journals_zgkydxxb_e201104016 |
source | Alma/SFX Local Collection |
subjects | Coal mine Gaussian model Helmet detection Human detection Image pattern recognition 危险区域 地下煤矿 头盔 标准图像 煤矿井下 矿工 自动监测 视频检测 |
title | A method for detecting miners based on helmets detection in underground coal mine videos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20detecting%20miners%20based%20on%20helmets%20detection%20in%20underground%20coal%20mine%20videos&rft.jtitle=Mining%20science%20and%20technology%20(China)&rft.au=Cai,%20Limei&rft.date=2011&rft.volume=21&rft.issue=4&rft.spage=553&rft.epage=556&rft.pages=553-556&rft.issn=1674-5264&rft.eissn=2212-6066&rft_id=info:doi/10.1016/j.mstc.2011.06.016&rft_dat=%3Cwanfang_jour_cross%3Ezgkydxxb_e201104016%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=40361912&rft_wanfj_id=zgkydxxb_e201104016&rft_els_id=S1674526411000986&rfr_iscdi=true |