A method for detecting miners based on helmets detection in underground coal mine videos

In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners, This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mining science and technology (China) 2011, Vol.21 (4), p.553-556
Hauptverfasser: Cai, Limei, Qian, Jiansheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556
container_issue 4
container_start_page 553
container_title Mining science and technology (China)
container_volume 21
creator Cai, Limei
Qian, Jiansheng
description In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners, This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four directional features, modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes. Out experimental results show that this method can detect helmets effectively. The detection rate was 83.7%.
doi_str_mv 10.1016/j.mstc.2011.06.016
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zgkydxxb_e201104016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>40361912</cqvip_id><wanfj_id>zgkydxxb_e201104016</wanfj_id><els_id>S1674526411000986</els_id><sourcerecordid>zgkydxxb_e201104016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2776-9c7a0e7972d379c889d4972fb5d686aec2686ad46826b25b0b6d6a58b7f2f98b3</originalsourceid><addsrcrecordid>eNp9kF9PwyAUxYnRxEX3BXzCZ9MKtKNt4suy-C9Z4osmvhEKtx1zBYVtbn56qZ0-yssJN-dwLj-ELihJKaH8epl2Ya1SRihNCU_j6AiNGKMs4YTzYzSivMiTCeP5KRqHsCTxZGVZ0XKEXqe4g_XCadw4jzWsQa2NbXFnLPiAaxlAY2fxAlbRF34dcWIs3lgNvvUuKlZOrn5SeGs0uHCOThq5CjA-6Bl6ubt9nj0k86f7x9l0nihWFDypVCEJFFXBdFZUKm6l83hp6onmJZegWC865yXjNZvUpOaay0lZFw1rqrLOztDV8O6ntI20rVi6jbexUXy1b3u929UCejIkj1yimw1u5V0IHhrx7k0n_V5QInqYYil6mKKPCMLFELoZQhD_sTXgRVAGrAJtfIQhtDP_xy8PnQtn249I9680JxmnFWXZN6-SiPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A method for detecting miners based on helmets detection in underground coal mine videos</title><source>Alma/SFX Local Collection</source><creator>Cai, Limei ; Qian, Jiansheng</creator><creatorcontrib>Cai, Limei ; Qian, Jiansheng</creatorcontrib><description>In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners, This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four directional features, modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes. Out experimental results show that this method can detect helmets effectively. The detection rate was 83.7%.</description><identifier>ISSN: 1674-5264</identifier><identifier>EISSN: 2212-6066</identifier><identifier>DOI: 10.1016/j.mstc.2011.06.016</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Coal mine ; Gaussian model ; Helmet detection ; Human detection ; Image pattern recognition ; 危险区域 ; 地下煤矿 ; 头盔 ; 标准图像 ; 煤矿井下 ; 矿工 ; 自动监测 ; 视频检测</subject><ispartof>Mining science and technology (China), 2011, Vol.21 (4), p.553-556</ispartof><rights>2011</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2776-9c7a0e7972d379c889d4972fb5d686aec2686ad46826b25b0b6d6a58b7f2f98b3</citedby><cites>FETCH-LOGICAL-c2776-9c7a0e7972d379c889d4972fb5d686aec2686ad46826b25b0b6d6a58b7f2f98b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85399A/85399A.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Cai, Limei</creatorcontrib><creatorcontrib>Qian, Jiansheng</creatorcontrib><title>A method for detecting miners based on helmets detection in underground coal mine videos</title><title>Mining science and technology (China)</title><addtitle>Mining Science and Technology</addtitle><description>In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners, This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four directional features, modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes. Out experimental results show that this method can detect helmets effectively. The detection rate was 83.7%.</description><subject>Coal mine</subject><subject>Gaussian model</subject><subject>Helmet detection</subject><subject>Human detection</subject><subject>Image pattern recognition</subject><subject>危险区域</subject><subject>地下煤矿</subject><subject>头盔</subject><subject>标准图像</subject><subject>煤矿井下</subject><subject>矿工</subject><subject>自动监测</subject><subject>视频检测</subject><issn>1674-5264</issn><issn>2212-6066</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kF9PwyAUxYnRxEX3BXzCZ9MKtKNt4suy-C9Z4osmvhEKtx1zBYVtbn56qZ0-yssJN-dwLj-ELihJKaH8epl2Ya1SRihNCU_j6AiNGKMs4YTzYzSivMiTCeP5KRqHsCTxZGVZ0XKEXqe4g_XCadw4jzWsQa2NbXFnLPiAaxlAY2fxAlbRF34dcWIs3lgNvvUuKlZOrn5SeGs0uHCOThq5CjA-6Bl6ubt9nj0k86f7x9l0nihWFDypVCEJFFXBdFZUKm6l83hp6onmJZegWC865yXjNZvUpOaay0lZFw1rqrLOztDV8O6ntI20rVi6jbexUXy1b3u929UCejIkj1yimw1u5V0IHhrx7k0n_V5QInqYYil6mKKPCMLFELoZQhD_sTXgRVAGrAJtfIQhtDP_xy8PnQtn249I9680JxmnFWXZN6-SiPE</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Cai, Limei</creator><creator>Qian, Jiansheng</creator><general>Elsevier B.V</general><general>School of Information and Electrical Engineering. China University of Mining &amp; Technology, Xuzhou 221116, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2011</creationdate><title>A method for detecting miners based on helmets detection in underground coal mine videos</title><author>Cai, Limei ; Qian, Jiansheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2776-9c7a0e7972d379c889d4972fb5d686aec2686ad46826b25b0b6d6a58b7f2f98b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coal mine</topic><topic>Gaussian model</topic><topic>Helmet detection</topic><topic>Human detection</topic><topic>Image pattern recognition</topic><topic>危险区域</topic><topic>地下煤矿</topic><topic>头盔</topic><topic>标准图像</topic><topic>煤矿井下</topic><topic>矿工</topic><topic>自动监测</topic><topic>视频检测</topic><toplevel>online_resources</toplevel><creatorcontrib>Cai, Limei</creatorcontrib><creatorcontrib>Qian, Jiansheng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Mining science and technology (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Limei</au><au>Qian, Jiansheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for detecting miners based on helmets detection in underground coal mine videos</atitle><jtitle>Mining science and technology (China)</jtitle><addtitle>Mining Science and Technology</addtitle><date>2011</date><risdate>2011</risdate><volume>21</volume><issue>4</issue><spage>553</spage><epage>556</epage><pages>553-556</pages><issn>1674-5264</issn><eissn>2212-6066</eissn><abstract>In order to monitor dangerous areas in coal mines automatically, we propose to detect helmets from underground coal mine videos for detecting miners, This method can overcome the impact of similarity between the targets and their background. We constructed standard images of helmets, extracted four directional features, modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes. Out experimental results show that this method can detect helmets effectively. The detection rate was 83.7%.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mstc.2011.06.016</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-5264
ispartof Mining science and technology (China), 2011, Vol.21 (4), p.553-556
issn 1674-5264
2212-6066
language eng
recordid cdi_wanfang_journals_zgkydxxb_e201104016
source Alma/SFX Local Collection
subjects Coal mine
Gaussian model
Helmet detection
Human detection
Image pattern recognition
危险区域
地下煤矿
头盔
标准图像
煤矿井下
矿工
自动监测
视频检测
title A method for detecting miners based on helmets detection in underground coal mine videos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20detecting%20miners%20based%20on%20helmets%20detection%20in%20underground%20coal%20mine%20videos&rft.jtitle=Mining%20science%20and%20technology%20(China)&rft.au=Cai,%20Limei&rft.date=2011&rft.volume=21&rft.issue=4&rft.spage=553&rft.epage=556&rft.pages=553-556&rft.issn=1674-5264&rft.eissn=2212-6066&rft_id=info:doi/10.1016/j.mstc.2011.06.016&rft_dat=%3Cwanfang_jour_cross%3Ezgkydxxb_e201104016%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=40361912&rft_wanfj_id=zgkydxxb_e201104016&rft_els_id=S1674526411000986&rfr_iscdi=true