Application of cusp catastrophe theory to reliability analysis of slopes in open-pit mines

A method of slope reliability analysis was developed by imposing a state equation on the limit equilibrium theory, given the basis of a fixed safety factor technique. Among the many problems of reliability analysis, the most important problem is to find a performance function. We have created a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mining science and technology (China) 2010, Vol.20 (1), p.71-75
Hauptverfasser: YANG, Kun, WANG, Tongxu, MA, Zhitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method of slope reliability analysis was developed by imposing a state equation on the limit equilibrium theory, given the basis of a fixed safety factor technique. Among the many problems of reliability analysis, the most important problem is to find a performance function. We have created a new method of building a limit state equation for planar slip surfaces by applying the mathematical cusp catastrophe theory. This new technique overcomes the defects in the traditional rigid limit equilibrium theory and offers a new way for studying the reliability problem of planar slip surfaces. Consequently, we applied the technique to a case of an open-pit mine and compared our results with that of the traditional approach. From the results we conclude that both methods are essentially consistent, but the reliability index calculated by the traditional model is lower than that from the catastrophic model. The catastrophe model takes into consideration two possible situations of a slope being in the limit equilibrium condition, i.e., it may or may not slip. In the traditional method, however, a slope is definitely considered as slipping when it meets the condition of a limit equilibrium. We conclude that the catastrophe model has more actual and instructive importance compared to the traditional model.
ISSN:1674-5264
2212-6066
DOI:10.1016/S1674-5264(09)60163-0