短期电力负荷预测模型的比较研究
TM714%TP181%TP183; 为了解决提高电力负荷预测精确度这一问题,越来越多的人工智能方法应用于能量功率预测.为此利用湖南省2014年至2017年的电力负荷数据,比较自回归(AR)模型、BP神经网络(BPNN)和指数平滑(ES)模型在预测日度电力负荷和月度电力负荷上的性能,并运用统计学知识来分析三种模型之间的差异.最终根据实验结果得出两个结论:AR模型对日度数据预测的结果优于其他两个模型以及ES模型对月度数据预测的结果优于其他两个模型....
Gespeichert in:
Veröffentlicht in: | 中国科学技术大学学报 2019, Vol.49 (2), p.119-124 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TM714%TP181%TP183; 为了解决提高电力负荷预测精确度这一问题,越来越多的人工智能方法应用于能量功率预测.为此利用湖南省2014年至2017年的电力负荷数据,比较自回归(AR)模型、BP神经网络(BPNN)和指数平滑(ES)模型在预测日度电力负荷和月度电力负荷上的性能,并运用统计学知识来分析三种模型之间的差异.最终根据实验结果得出两个结论:AR模型对日度数据预测的结果优于其他两个模型以及ES模型对月度数据预测的结果优于其他两个模型. |
---|---|
ISSN: | 0253-2778 |
DOI: | 10.3969/j.issn.0253-2778.2019.02.006 |