3正则3连通图的转发指数

n阶连通图G的路由选择R是由连接G的每个有向顶点对的n(n-1)条路组成.R经过G的每个顶点(每条边)的路的最大条数称为G关于R的点转发指数ξ(G,R)(边转发指数π(G,R)).对G的所有路由选择R,ξ(G,R)(π(G,R))的最小值称为G的点转发指数ξ(G)(边转发指数π(G)).对于k正则k连通图G,Fernandez de la Vega和Manoussakis[Discrete Applied Mathematics,1989,23(2):103—123]证明ξ(G)≤(n—1)·[(n-k-1)/k]和π(G)≤n[(n-k-1)/k],并且猜想ξ(G)≤[(n-k)(n-k-1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zhōngguó kēxué jìshù dàxué xuébào 2008, Vol.38 (5), p.456-459
1. Verfasser: 周敏杰 徐敏 徐俊明
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:n阶连通图G的路由选择R是由连接G的每个有向顶点对的n(n-1)条路组成.R经过G的每个顶点(每条边)的路的最大条数称为G关于R的点转发指数ξ(G,R)(边转发指数π(G,R)).对G的所有路由选择R,ξ(G,R)(π(G,R))的最小值称为G的点转发指数ξ(G)(边转发指数π(G)).对于k正则k连通图G,Fernandez de la Vega和Manoussakis[Discrete Applied Mathematics,1989,23(2):103—123]证明ξ(G)≤(n—1)·[(n-k-1)/k]和π(G)≤n[(n-k-1)/k],并且猜想ξ(G)≤[(n-k)(n-k-1)/k].我们分别改进了ξ(G)≤(n—1)[(n-k-1)/k]-(n-k-1)和π(G)≤n[(n-k-1)/k]-(n-k),并且证明了猜想对k=3的情形.
ISSN:0253-2778