3正则3连通图的转发指数
n阶连通图G的路由选择R是由连接G的每个有向顶点对的n(n-1)条路组成.R经过G的每个顶点(每条边)的路的最大条数称为G关于R的点转发指数ξ(G,R)(边转发指数π(G,R)).对G的所有路由选择R,ξ(G,R)(π(G,R))的最小值称为G的点转发指数ξ(G)(边转发指数π(G)).对于k正则k连通图G,Fernandez de la Vega和Manoussakis[Discrete Applied Mathematics,1989,23(2):103—123]证明ξ(G)≤(n—1)·[(n-k-1)/k]和π(G)≤n[(n-k-1)/k],并且猜想ξ(G)≤[(n-k)(n-k-1...
Gespeichert in:
Veröffentlicht in: | Zhōngguó kēxué jìshù dàxué xuébào 2008, Vol.38 (5), p.456-459 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | n阶连通图G的路由选择R是由连接G的每个有向顶点对的n(n-1)条路组成.R经过G的每个顶点(每条边)的路的最大条数称为G关于R的点转发指数ξ(G,R)(边转发指数π(G,R)).对G的所有路由选择R,ξ(G,R)(π(G,R))的最小值称为G的点转发指数ξ(G)(边转发指数π(G)).对于k正则k连通图G,Fernandez de la Vega和Manoussakis[Discrete Applied Mathematics,1989,23(2):103—123]证明ξ(G)≤(n—1)·[(n-k-1)/k]和π(G)≤n[(n-k-1)/k],并且猜想ξ(G)≤[(n-k)(n-k-1)/k].我们分别改进了ξ(G)≤(n—1)[(n-k-1)/k]-(n-k-1)和π(G)≤n[(n-k-1)/k]-(n-k),并且证明了猜想对k=3的情形. |
---|---|
ISSN: | 0253-2778 |