Variational solution about over-determined geodetic boundary value problem and its related theories

A new solving method for Laplace equation with over-determined geodetic boundary conditions is proposed in the paper, with the help of minimizing some kinds of quadratic functional in calculus of variation. At first, the so-called variational solution for over-determined geodetic boundary value prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Earth sciences 2007-04, Vol.50 (4), p.555-562
Hauptverfasser: Yu, JinHai, Peng, FuQing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 562
container_issue 4
container_start_page 555
container_title Science China. Earth sciences
container_volume 50
creator Yu, JinHai
Peng, FuQing
description A new solving method for Laplace equation with over-determined geodetic boundary conditions is proposed in the paper, with the help of minimizing some kinds of quadratic functional in calculus of variation. At first, the so-called variational solution for over-determined geodetic boundary value problem is defined in terms of principles in calculus of variation. Then theoretical properties related with the solution are derived, especially for its existence, uniqueness and optimal approximation. And then the computational method of the solution is discussed, and its expression is exhibited under the case that all boundaries are spheres. Finally an arithmetic example about EGM96 gravity field model is given, and the computational results show that the proposed method can efficiently raise accuracy to deal with gravity data. In all, the variational solution of over-determined geodetic boundary value problem can not only fit to deal with many kinds of gravity data in a united form, but also has strict mathematical basements.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11430-007-2049-6
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zgkx_ed200704009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgkx_ed200704009</wanfj_id><sourcerecordid>zgkx_ed200704009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-cc2e0783ab9c1c8e3badbf07345cd5a7f33610de0da6b1258a8421fde84b85a23</originalsourceid><addsrcrecordid>eNpdkU9P3DAQxaMKJLZLPwA3q5f2Yhj_SeIcK9QC0kpcoFdrYk-WLNl4ayfQ9tPX0VYcOM0bzU-jmfeK4kLApQCor5IQWgHPkkvQDa8-FCthKsmlAXGSNUDFGyXUWfExpR2AakrdrAr3E2OPUx9GHFgKw7xIhm2YJxZeKHJPE8V9P5JnWwq56x3L09Fj_MNecJiJHWJoB9ozHD3rp8QiDThlfnqiEHtK58Vph0OiT__runj88f3h-pZv7m_urr9tuFOqnrhzkqA2CtvGCWdItejbDmqlS-dLrDulKgGewGPVClkaNFqKzpPRrSlRqnXx9bj3FccOx63dhTnmv5L9u33-bcnLbA9ogCajX45ovv3XTGmy-z45GgYcKczJGt1oo0RjMvn5Hfm2ta6kqnUJCySOkIshpUidPcR-nx2yAuySjz3mYxe55GMr9Q_2mYRy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762374508</pqid></control><display><type>article</type><title>Variational solution about over-determined geodetic boundary value problem and its related theories</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Yu, JinHai ; Peng, FuQing</creator><creatorcontrib>Yu, JinHai ; Peng, FuQing</creatorcontrib><description>A new solving method for Laplace equation with over-determined geodetic boundary conditions is proposed in the paper, with the help of minimizing some kinds of quadratic functional in calculus of variation. At first, the so-called variational solution for over-determined geodetic boundary value problem is defined in terms of principles in calculus of variation. Then theoretical properties related with the solution are derived, especially for its existence, uniqueness and optimal approximation. And then the computational method of the solution is discussed, and its expression is exhibited under the case that all boundaries are spheres. Finally an arithmetic example about EGM96 gravity field model is given, and the computational results show that the proposed method can efficiently raise accuracy to deal with gravity data. In all, the variational solution of over-determined geodetic boundary value problem can not only fit to deal with many kinds of gravity data in a united form, but also has strict mathematical basements.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1006-9313</identifier><identifier>ISSN: 1674-7313</identifier><identifier>EISSN: 1862-2801</identifier><identifier>EISSN: 1869-1897</identifier><identifier>DOI: 10.1007/s11430-007-2049-6</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Arithmetic ; Basements ; Boundary conditions ; Boundary value problems ; Calculus of variations ; Computation ; Gravitation ; Laplace equation ; Mathematical analysis ; Mathematical models ; Studies</subject><ispartof>Science China. Earth sciences, 2007-04, Vol.50 (4), p.555-562</ispartof><rights>Science in China Press 2007</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-cc2e0783ab9c1c8e3badbf07345cd5a7f33610de0da6b1258a8421fde84b85a23</citedby><cites>FETCH-LOGICAL-c337t-cc2e0783ab9c1c8e3badbf07345cd5a7f33610de0da6b1258a8421fde84b85a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgkx-ed/zgkx-ed.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yu, JinHai</creatorcontrib><creatorcontrib>Peng, FuQing</creatorcontrib><title>Variational solution about over-determined geodetic boundary value problem and its related theories</title><title>Science China. Earth sciences</title><description>A new solving method for Laplace equation with over-determined geodetic boundary conditions is proposed in the paper, with the help of minimizing some kinds of quadratic functional in calculus of variation. At first, the so-called variational solution for over-determined geodetic boundary value problem is defined in terms of principles in calculus of variation. Then theoretical properties related with the solution are derived, especially for its existence, uniqueness and optimal approximation. And then the computational method of the solution is discussed, and its expression is exhibited under the case that all boundaries are spheres. Finally an arithmetic example about EGM96 gravity field model is given, and the computational results show that the proposed method can efficiently raise accuracy to deal with gravity data. In all, the variational solution of over-determined geodetic boundary value problem can not only fit to deal with many kinds of gravity data in a united form, but also has strict mathematical basements.[PUBLICATION ABSTRACT]</description><subject>Arithmetic</subject><subject>Basements</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Calculus of variations</subject><subject>Computation</subject><subject>Gravitation</subject><subject>Laplace equation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Studies</subject><issn>1006-9313</issn><issn>1674-7313</issn><issn>1862-2801</issn><issn>1869-1897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU9P3DAQxaMKJLZLPwA3q5f2Yhj_SeIcK9QC0kpcoFdrYk-WLNl4ayfQ9tPX0VYcOM0bzU-jmfeK4kLApQCor5IQWgHPkkvQDa8-FCthKsmlAXGSNUDFGyXUWfExpR2AakrdrAr3E2OPUx9GHFgKw7xIhm2YJxZeKHJPE8V9P5JnWwq56x3L09Fj_MNecJiJHWJoB9ozHD3rp8QiDThlfnqiEHtK58Vph0OiT__runj88f3h-pZv7m_urr9tuFOqnrhzkqA2CtvGCWdItejbDmqlS-dLrDulKgGewGPVClkaNFqKzpPRrSlRqnXx9bj3FccOx63dhTnmv5L9u33-bcnLbA9ogCajX45ovv3XTGmy-z45GgYcKczJGt1oo0RjMvn5Hfm2ta6kqnUJCySOkIshpUidPcR-nx2yAuySjz3mYxe55GMr9Q_2mYRy</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Yu, JinHai</creator><creator>Peng, FuQing</creator><general>Springer Nature B.V</general><general>Institute of Geodesy and Geophysics,Chinese Academy of Sciences,Wuhan 430077,China</general><general>College of Earth Scienc,Graduate University of Chinese Academy of Sciences,Beijing 100049,China%Zhenghou Institute of Surveying and Mapping,Zhengzhou 450052,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20070401</creationdate><title>Variational solution about over-determined geodetic boundary value problem and its related theories</title><author>Yu, JinHai ; Peng, FuQing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-cc2e0783ab9c1c8e3badbf07345cd5a7f33610de0da6b1258a8421fde84b85a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Arithmetic</topic><topic>Basements</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Calculus of variations</topic><topic>Computation</topic><topic>Gravitation</topic><topic>Laplace equation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, JinHai</creatorcontrib><creatorcontrib>Peng, FuQing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Science China. Earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, JinHai</au><au>Peng, FuQing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational solution about over-determined geodetic boundary value problem and its related theories</atitle><jtitle>Science China. Earth sciences</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>50</volume><issue>4</issue><spage>555</spage><epage>562</epage><pages>555-562</pages><issn>1006-9313</issn><issn>1674-7313</issn><eissn>1862-2801</eissn><eissn>1869-1897</eissn><abstract>A new solving method for Laplace equation with over-determined geodetic boundary conditions is proposed in the paper, with the help of minimizing some kinds of quadratic functional in calculus of variation. At first, the so-called variational solution for over-determined geodetic boundary value problem is defined in terms of principles in calculus of variation. Then theoretical properties related with the solution are derived, especially for its existence, uniqueness and optimal approximation. And then the computational method of the solution is discussed, and its expression is exhibited under the case that all boundaries are spheres. Finally an arithmetic example about EGM96 gravity field model is given, and the computational results show that the proposed method can efficiently raise accuracy to deal with gravity data. In all, the variational solution of over-determined geodetic boundary value problem can not only fit to deal with many kinds of gravity data in a united form, but also has strict mathematical basements.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11430-007-2049-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1006-9313
ispartof Science China. Earth sciences, 2007-04, Vol.50 (4), p.555-562
issn 1006-9313
1674-7313
1862-2801
1869-1897
language eng
recordid cdi_wanfang_journals_zgkx_ed200704009
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Arithmetic
Basements
Boundary conditions
Boundary value problems
Calculus of variations
Computation
Gravitation
Laplace equation
Mathematical analysis
Mathematical models
Studies
title Variational solution about over-determined geodetic boundary value problem and its related theories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20solution%20about%20over-determined%20geodetic%20boundary%20value%20problem%20and%20its%20related%20theories&rft.jtitle=Science%20China.%20Earth%20sciences&rft.au=Yu,%20JinHai&rft.date=2007-04-01&rft.volume=50&rft.issue=4&rft.spage=555&rft.epage=562&rft.pages=555-562&rft.issn=1006-9313&rft.eissn=1862-2801&rft_id=info:doi/10.1007/s11430-007-2049-6&rft_dat=%3Cwanfang_jour_proqu%3Ezgkx_ed200704009%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=762374508&rft_id=info:pmid/&rft_wanfj_id=zgkx_ed200704009&rfr_iscdi=true