Hydrodynamic Performance and Power Absorption of A Coaxial Double-Buoy Wave Energy Converter
As an important wave energy converter (WEC), the double-buoy device has advantages of wider energy absorption band and deeper water adaptability, which attract an increasing number of attentions from researchers. This paper makes an in-depth study on double-buoy WEC, by means of the combination of m...
Gespeichert in:
Veröffentlicht in: | China ocean engineering 2023-06, Vol.37 (3), p.378-392 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 392 |
---|---|
container_issue | 3 |
container_start_page | 378 |
container_title | China ocean engineering |
container_volume | 37 |
creator | Li, De-min Dong, Xiao-chen Li, Yan-ni Huang, He-ao Shi, Hong-da |
description | As an important wave energy converter (WEC), the double-buoy device has advantages of wider energy absorption band and deeper water adaptability, which attract an increasing number of attentions from researchers. This paper makes an in-depth study on double-buoy WEC, by means of the combination of model experiment and numerical simulation. The Response Amplitude Operator (RAO) and energy capture of the double-buoy under constant power take-off (PTO) damping are investigated in the model test, while the average power output and capture width ratio (CWR) are calculated by the numerical simulation to analyze the influence of the wave condition, PTO, and the geometry parameters of the device. The AQWA-Fortran united simulation system, including the secondary development of AQWA software coupled with the flowchart of the Fortran code, models a new dynamic system. Various viscous damping and hydraulic friction from WEC system are measured from the experimental results, and these values are added to the equation of motion. As a result, the energy loss is contained in the final numerical model the by united simulation system. Using the developed numerical model, the optimal period of energy capture is identified. The power capture reaches the maximum value under the outer buoy’s natural period. The paper gives the peak value of the energy capture under the linear PTO damping force, and calculates the optimal mass ratio of the device. |
doi_str_mv | 10.1007/s13344-023-0032-4 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zghygc_e202303003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zghygc_e202303003</wanfj_id><sourcerecordid>zghygc_e202303003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-2e6ed5c95abf7a0b75ce190fc2929118ade29a467e7c2dd6b6ed622351ee0cf93</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AlYtoHpPOZFlrtYJgF4obIWQyd8aWNqlJH46_3pQRunJ1F-c758KH0CWjN4zS_DYyIbKMUC4IpYKT7Aj1OFOMFCqTx6hHC0WJzIr8FJ3FOKdUMpmxHvqYtFXwVevMcmbxFELtw9I4C9i4Ck_9DgIeltGH1XrmHfY1HuKRN98zs8D3flMugNxtfIvfzRbw2EFo2pS7LYQ1hHN0UptFhIu_20dvD-PX0YQ8vzw-jYbPxAol1oTDACpplTRlnRta5tICU7S2XHHFWGEq4Mpkgxxyy6tqUCZ8wLmQDIDaWok-uu52d8bVxjV67jfBpY_6p_lsG6uBJzFUJDOJverYVfBfG4jrA8wLUeRC5FwminWUDT7GALVehdnShFYzqvfCdSdcp129F66z1OFdJybWNRAOy_-XfgEgeoL_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838733725</pqid></control><display><type>article</type><title>Hydrodynamic Performance and Power Absorption of A Coaxial Double-Buoy Wave Energy Converter</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Li, De-min ; Dong, Xiao-chen ; Li, Yan-ni ; Huang, He-ao ; Shi, Hong-da</creator><creatorcontrib>Li, De-min ; Dong, Xiao-chen ; Li, Yan-ni ; Huang, He-ao ; Shi, Hong-da</creatorcontrib><description>As an important wave energy converter (WEC), the double-buoy device has advantages of wider energy absorption band and deeper water adaptability, which attract an increasing number of attentions from researchers. This paper makes an in-depth study on double-buoy WEC, by means of the combination of model experiment and numerical simulation. The Response Amplitude Operator (RAO) and energy capture of the double-buoy under constant power take-off (PTO) damping are investigated in the model test, while the average power output and capture width ratio (CWR) are calculated by the numerical simulation to analyze the influence of the wave condition, PTO, and the geometry parameters of the device. The AQWA-Fortran united simulation system, including the secondary development of AQWA software coupled with the flowchart of the Fortran code, models a new dynamic system. Various viscous damping and hydraulic friction from WEC system are measured from the experimental results, and these values are added to the equation of motion. As a result, the energy loss is contained in the final numerical model the by united simulation system. Using the developed numerical model, the optimal period of energy capture is identified. The power capture reaches the maximum value under the outer buoy’s natural period. The paper gives the peak value of the energy capture under the linear PTO damping force, and calculates the optimal mass ratio of the device.</description><identifier>ISSN: 0890-5487</identifier><identifier>EISSN: 2191-8945</identifier><identifier>DOI: 10.1007/s13344-023-0032-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption ; Absorption spectra ; Adaptability ; Buoys ; Coastal Sciences ; Damping ; Dynamical systems ; Energy ; Energy absorption ; Energy loss ; Energy losses ; Engineering ; Equations of motion ; Flow charts ; Fluid- and Aerodynamics ; FORTRAN ; Hydraulic friction ; Marine & Freshwater Sciences ; Mathematical models ; Numerical and Computational Physics ; Numerical models ; Oceanography ; Offshore Engineering ; Original Paper ; Peak values ; Simulation ; Viscous damping ; Wave energy ; Wave power</subject><ispartof>China ocean engineering, 2023-06, Vol.37 (3), p.378-392</ispartof><rights>Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023</rights><rights>Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-2e6ed5c95abf7a0b75ce190fc2929118ade29a467e7c2dd6b6ed622351ee0cf93</citedby><cites>FETCH-LOGICAL-c393t-2e6ed5c95abf7a0b75ce190fc2929118ade29a467e7c2dd6b6ed622351ee0cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zghygc-e/zghygc-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13344-023-0032-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13344-023-0032-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Li, De-min</creatorcontrib><creatorcontrib>Dong, Xiao-chen</creatorcontrib><creatorcontrib>Li, Yan-ni</creatorcontrib><creatorcontrib>Huang, He-ao</creatorcontrib><creatorcontrib>Shi, Hong-da</creatorcontrib><title>Hydrodynamic Performance and Power Absorption of A Coaxial Double-Buoy Wave Energy Converter</title><title>China ocean engineering</title><addtitle>China Ocean Eng</addtitle><description>As an important wave energy converter (WEC), the double-buoy device has advantages of wider energy absorption band and deeper water adaptability, which attract an increasing number of attentions from researchers. This paper makes an in-depth study on double-buoy WEC, by means of the combination of model experiment and numerical simulation. The Response Amplitude Operator (RAO) and energy capture of the double-buoy under constant power take-off (PTO) damping are investigated in the model test, while the average power output and capture width ratio (CWR) are calculated by the numerical simulation to analyze the influence of the wave condition, PTO, and the geometry parameters of the device. The AQWA-Fortran united simulation system, including the secondary development of AQWA software coupled with the flowchart of the Fortran code, models a new dynamic system. Various viscous damping and hydraulic friction from WEC system are measured from the experimental results, and these values are added to the equation of motion. As a result, the energy loss is contained in the final numerical model the by united simulation system. Using the developed numerical model, the optimal period of energy capture is identified. The power capture reaches the maximum value under the outer buoy’s natural period. The paper gives the peak value of the energy capture under the linear PTO damping force, and calculates the optimal mass ratio of the device.</description><subject>Absorption</subject><subject>Absorption spectra</subject><subject>Adaptability</subject><subject>Buoys</subject><subject>Coastal Sciences</subject><subject>Damping</subject><subject>Dynamical systems</subject><subject>Energy</subject><subject>Energy absorption</subject><subject>Energy loss</subject><subject>Energy losses</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Flow charts</subject><subject>Fluid- and Aerodynamics</subject><subject>FORTRAN</subject><subject>Hydraulic friction</subject><subject>Marine & Freshwater Sciences</subject><subject>Mathematical models</subject><subject>Numerical and Computational Physics</subject><subject>Numerical models</subject><subject>Oceanography</subject><subject>Offshore Engineering</subject><subject>Original Paper</subject><subject>Peak values</subject><subject>Simulation</subject><subject>Viscous damping</subject><subject>Wave energy</subject><subject>Wave power</subject><issn>0890-5487</issn><issn>2191-8945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3AlYtoHpPOZFlrtYJgF4obIWQyd8aWNqlJH46_3pQRunJ1F-c758KH0CWjN4zS_DYyIbKMUC4IpYKT7Aj1OFOMFCqTx6hHC0WJzIr8FJ3FOKdUMpmxHvqYtFXwVevMcmbxFELtw9I4C9i4Ck_9DgIeltGH1XrmHfY1HuKRN98zs8D3flMugNxtfIvfzRbw2EFo2pS7LYQ1hHN0UptFhIu_20dvD-PX0YQ8vzw-jYbPxAol1oTDACpplTRlnRta5tICU7S2XHHFWGEq4Mpkgxxyy6tqUCZ8wLmQDIDaWok-uu52d8bVxjV67jfBpY_6p_lsG6uBJzFUJDOJverYVfBfG4jrA8wLUeRC5FwminWUDT7GALVehdnShFYzqvfCdSdcp129F66z1OFdJybWNRAOy_-XfgEgeoL_</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Li, De-min</creator><creator>Dong, Xiao-chen</creator><creator>Li, Yan-ni</creator><creator>Huang, He-ao</creator><creator>Shi, Hong-da</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Qingdao Municipal Key Laboratory of Ocean Renewable Energy,Ocean University of China,Qingdao 266100,China</general><general>College of Engineering,Ocean University of China,Qingdao 266400,China%College of Engineering,Ocean University of China,Qingdao 266400,China</general><general>Shandong Provincial Key Laboratory of Ocean Engineering,Qingdao 266100,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230601</creationdate><title>Hydrodynamic Performance and Power Absorption of A Coaxial Double-Buoy Wave Energy Converter</title><author>Li, De-min ; Dong, Xiao-chen ; Li, Yan-ni ; Huang, He-ao ; Shi, Hong-da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-2e6ed5c95abf7a0b75ce190fc2929118ade29a467e7c2dd6b6ed622351ee0cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Absorption spectra</topic><topic>Adaptability</topic><topic>Buoys</topic><topic>Coastal Sciences</topic><topic>Damping</topic><topic>Dynamical systems</topic><topic>Energy</topic><topic>Energy absorption</topic><topic>Energy loss</topic><topic>Energy losses</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Flow charts</topic><topic>Fluid- and Aerodynamics</topic><topic>FORTRAN</topic><topic>Hydraulic friction</topic><topic>Marine & Freshwater Sciences</topic><topic>Mathematical models</topic><topic>Numerical and Computational Physics</topic><topic>Numerical models</topic><topic>Oceanography</topic><topic>Offshore Engineering</topic><topic>Original Paper</topic><topic>Peak values</topic><topic>Simulation</topic><topic>Viscous damping</topic><topic>Wave energy</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, De-min</creatorcontrib><creatorcontrib>Dong, Xiao-chen</creatorcontrib><creatorcontrib>Li, Yan-ni</creatorcontrib><creatorcontrib>Huang, He-ao</creatorcontrib><creatorcontrib>Shi, Hong-da</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>China ocean engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, De-min</au><au>Dong, Xiao-chen</au><au>Li, Yan-ni</au><au>Huang, He-ao</au><au>Shi, Hong-da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic Performance and Power Absorption of A Coaxial Double-Buoy Wave Energy Converter</atitle><jtitle>China ocean engineering</jtitle><stitle>China Ocean Eng</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>37</volume><issue>3</issue><spage>378</spage><epage>392</epage><pages>378-392</pages><issn>0890-5487</issn><eissn>2191-8945</eissn><abstract>As an important wave energy converter (WEC), the double-buoy device has advantages of wider energy absorption band and deeper water adaptability, which attract an increasing number of attentions from researchers. This paper makes an in-depth study on double-buoy WEC, by means of the combination of model experiment and numerical simulation. The Response Amplitude Operator (RAO) and energy capture of the double-buoy under constant power take-off (PTO) damping are investigated in the model test, while the average power output and capture width ratio (CWR) are calculated by the numerical simulation to analyze the influence of the wave condition, PTO, and the geometry parameters of the device. The AQWA-Fortran united simulation system, including the secondary development of AQWA software coupled with the flowchart of the Fortran code, models a new dynamic system. Various viscous damping and hydraulic friction from WEC system are measured from the experimental results, and these values are added to the equation of motion. As a result, the energy loss is contained in the final numerical model the by united simulation system. Using the developed numerical model, the optimal period of energy capture is identified. The power capture reaches the maximum value under the outer buoy’s natural period. The paper gives the peak value of the energy capture under the linear PTO damping force, and calculates the optimal mass ratio of the device.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13344-023-0032-4</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-5487 |
ispartof | China ocean engineering, 2023-06, Vol.37 (3), p.378-392 |
issn | 0890-5487 2191-8945 |
language | eng |
recordid | cdi_wanfang_journals_zghygc_e202303003 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Absorption Absorption spectra Adaptability Buoys Coastal Sciences Damping Dynamical systems Energy Energy absorption Energy loss Energy losses Engineering Equations of motion Flow charts Fluid- and Aerodynamics FORTRAN Hydraulic friction Marine & Freshwater Sciences Mathematical models Numerical and Computational Physics Numerical models Oceanography Offshore Engineering Original Paper Peak values Simulation Viscous damping Wave energy Wave power |
title | Hydrodynamic Performance and Power Absorption of A Coaxial Double-Buoy Wave Energy Converter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20Performance%20and%20Power%20Absorption%20of%20A%20Coaxial%20Double-Buoy%20Wave%20Energy%20Converter&rft.jtitle=China%20ocean%20engineering&rft.au=Li,%20De-min&rft.date=2023-06-01&rft.volume=37&rft.issue=3&rft.spage=378&rft.epage=392&rft.pages=378-392&rft.issn=0890-5487&rft.eissn=2191-8945&rft_id=info:doi/10.1007/s13344-023-0032-4&rft_dat=%3Cwanfang_jour_proqu%3Ezghygc_e202303003%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838733725&rft_id=info:pmid/&rft_wanfj_id=zghygc_e202303003&rfr_iscdi=true |