Influence on the Solid—Liquid Two-Phase Flow from Cross-Section Area of Slurry Pumps for Deep-Sea Mining
To explore the mechanism of solid-liquid two-phase flow in deep-sea mining pumps, this paper investigates the influences of the impeller cross-section area on the multi-phase flow in the slurry pump. Experimental and numerical results are presented for two-phase flow in four impellers with different...
Gespeichert in:
Veröffentlicht in: | China ocean engineering 2022-06, Vol.36 (3), p.439-450 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To explore the mechanism of solid-liquid two-phase flow in deep-sea mining pumps, this paper investigates the influences of the impeller cross-section area on the multi-phase flow in the slurry pump. Experimental and numerical results are presented for two-phase flow in four impellers with different cross-section areas. They show that the degree of vortex strength and the passing capacity of particles increase as the cross-section area of the impeller. In addition, the correlations between the two-phase flow and cross-section area have been revealed by a mathematical model taking the force of the flow field into account. The simulation results confirm the theoretical analysis, while the experimental pump performances validate the numerical calculation. The influence of the cross-section area on two-phase flow and pump performance could provide theoretical support for the design of high-performance deep-sea mining slurry pumps. |
---|---|
ISSN: | 0890-5487 2191-8945 |
DOI: | 10.1007/s13344-022-0039-2 |