An Advanced Probabilistic Neural Network for the Design of Breakwater Armor Blocks

In this study, an advanced probabilistic neural network (APNN) method is proposed to reflect the global probability density function (PDF) by summing up the heterogeneous local PDF which is automatically determined in the individual standard deviation of variables. The APNN is applied to predict the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:China ocean engineering 2007-12, Vol.21 (4), p.597-610
1. Verfasser: Dookie KIM Dong Hyawn KIM Seongkyu CHANG Gil Lim YOON
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 610
container_issue 4
container_start_page 597
container_title China ocean engineering
container_volume 21
creator Dookie KIM Dong Hyawn KIM Seongkyu CHANG Gil Lim YOON
description In this study, an advanced probabilistic neural network (APNN) method is proposed to reflect the global probability density function (PDF) by summing up the heterogeneous local PDF which is automatically determined in the individual standard deviation of variables. The APNN is applied to predict the stability number of armor blocks of breakwaters using the experimental data of' van der Meet, and the estimated results of the APNN are compared with those of an empirical formula and a previous artificial neural network (ANN) model. The APNN shows better results in predicting the stability number of armor bilks of breakwater and it provided the promising probabilistic viewpoints by using the individual standard deviation in a variable.
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_zghygc_e200704005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>26124089</cqvip_id><wanfj_id>zghygc_e200704005</wanfj_id><sourcerecordid>zghygc_e200704005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-42bf66431b33ae27492afcdbeed62fab081ff67e023f6f5d292de685789108243</originalsourceid><addsrcrecordid>eNotkE1LxDAYhIMouK7-h-DNQyF5m6bpsbt-wqIiei5J-qbbbU0w7brorzewnuYwDzPMnJAF8IpnqhLFKVkwVbGsEKo8JxfTtGOs4IXgC_JWe1q339pbbOlrDEabfuynubf0GfdRj0nmQ4gDdSHSeYv0Fqe-8zQ4uoqoh4OeMdI6fiZ7NQY7TJfkzOlxwqt_XZKP-7v39WO2eXl4WtebzAKXcybAOClFzk2ea4RSVKCdbQ1iK8FpwxR3TpbIIHfSFS1U0KJURakqzhSIfElujrkH7Z32XbML--hTY_PbbX862yAwVjKRtib2-sjabfDdV59oo-3g-hEbkBxE-if_A5nuWdM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Advanced Probabilistic Neural Network for the Design of Breakwater Armor Blocks</title><source>Alma/SFX Local Collection</source><creator>Dookie KIM Dong Hyawn KIM Seongkyu CHANG Gil Lim YOON</creator><creatorcontrib>Dookie KIM Dong Hyawn KIM Seongkyu CHANG Gil Lim YOON</creatorcontrib><description>In this study, an advanced probabilistic neural network (APNN) method is proposed to reflect the global probability density function (PDF) by summing up the heterogeneous local PDF which is automatically determined in the individual standard deviation of variables. The APNN is applied to predict the stability number of armor blocks of breakwaters using the experimental data of' van der Meet, and the estimated results of the APNN are compared with those of an empirical formula and a previous artificial neural network (ANN) model. The APNN shows better results in predicting the stability number of armor bilks of breakwater and it provided the promising probabilistic viewpoints by using the individual standard deviation in a variable.</description><identifier>ISSN: 0890-5487</identifier><identifier>EISSN: 2191-8945</identifier><language>eng</language><publisher>Department of Civil and Environmental Engineering, Kunsan National University,Kunsan, Jeonbuk, Korea%Department of Ocean System Engineering, Kunsan National University, Kunsan,Jeonbuk, Korea%Coastal Engineering Research Department, KORDI,Ansan,Gyeonggi, Korea</publisher><subject>分析方法 ; 防浪堤</subject><ispartof>China ocean engineering, 2007-12, Vol.21 (4), p.597-610</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86654A/86654A.jpg</thumbnail><link.rule.ids>315,782,786</link.rule.ids></links><search><creatorcontrib>Dookie KIM Dong Hyawn KIM Seongkyu CHANG Gil Lim YOON</creatorcontrib><title>An Advanced Probabilistic Neural Network for the Design of Breakwater Armor Blocks</title><title>China ocean engineering</title><addtitle>China Ocean Engineering</addtitle><description>In this study, an advanced probabilistic neural network (APNN) method is proposed to reflect the global probability density function (PDF) by summing up the heterogeneous local PDF which is automatically determined in the individual standard deviation of variables. The APNN is applied to predict the stability number of armor blocks of breakwaters using the experimental data of' van der Meet, and the estimated results of the APNN are compared with those of an empirical formula and a previous artificial neural network (ANN) model. The APNN shows better results in predicting the stability number of armor bilks of breakwater and it provided the promising probabilistic viewpoints by using the individual standard deviation in a variable.</description><subject>分析方法</subject><subject>防浪堤</subject><issn>0890-5487</issn><issn>2191-8945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAYhIMouK7-h-DNQyF5m6bpsbt-wqIiei5J-qbbbU0w7brorzewnuYwDzPMnJAF8IpnqhLFKVkwVbGsEKo8JxfTtGOs4IXgC_JWe1q339pbbOlrDEabfuynubf0GfdRj0nmQ4gDdSHSeYv0Fqe-8zQ4uoqoh4OeMdI6fiZ7NQY7TJfkzOlxwqt_XZKP-7v39WO2eXl4WtebzAKXcybAOClFzk2ea4RSVKCdbQ1iK8FpwxR3TpbIIHfSFS1U0KJURakqzhSIfElujrkH7Z32XbML--hTY_PbbX862yAwVjKRtib2-sjabfDdV59oo-3g-hEbkBxE-if_A5nuWdM</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Dookie KIM Dong Hyawn KIM Seongkyu CHANG Gil Lim YOON</creator><general>Department of Civil and Environmental Engineering, Kunsan National University,Kunsan, Jeonbuk, Korea%Department of Ocean System Engineering, Kunsan National University, Kunsan,Jeonbuk, Korea%Coastal Engineering Research Department, KORDI,Ansan,Gyeonggi, Korea</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>200712</creationdate><title>An Advanced Probabilistic Neural Network for the Design of Breakwater Armor Blocks</title><author>Dookie KIM Dong Hyawn KIM Seongkyu CHANG Gil Lim YOON</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-42bf66431b33ae27492afcdbeed62fab081ff67e023f6f5d292de685789108243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>分析方法</topic><topic>防浪堤</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dookie KIM Dong Hyawn KIM Seongkyu CHANG Gil Lim YOON</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>China ocean engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dookie KIM Dong Hyawn KIM Seongkyu CHANG Gil Lim YOON</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Advanced Probabilistic Neural Network for the Design of Breakwater Armor Blocks</atitle><jtitle>China ocean engineering</jtitle><addtitle>China Ocean Engineering</addtitle><date>2007-12</date><risdate>2007</risdate><volume>21</volume><issue>4</issue><spage>597</spage><epage>610</epage><pages>597-610</pages><issn>0890-5487</issn><eissn>2191-8945</eissn><abstract>In this study, an advanced probabilistic neural network (APNN) method is proposed to reflect the global probability density function (PDF) by summing up the heterogeneous local PDF which is automatically determined in the individual standard deviation of variables. The APNN is applied to predict the stability number of armor blocks of breakwaters using the experimental data of' van der Meet, and the estimated results of the APNN are compared with those of an empirical formula and a previous artificial neural network (ANN) model. The APNN shows better results in predicting the stability number of armor bilks of breakwater and it provided the promising probabilistic viewpoints by using the individual standard deviation in a variable.</abstract><pub>Department of Civil and Environmental Engineering, Kunsan National University,Kunsan, Jeonbuk, Korea%Department of Ocean System Engineering, Kunsan National University, Kunsan,Jeonbuk, Korea%Coastal Engineering Research Department, KORDI,Ansan,Gyeonggi, Korea</pub><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0890-5487
ispartof China ocean engineering, 2007-12, Vol.21 (4), p.597-610
issn 0890-5487
2191-8945
language eng
recordid cdi_wanfang_journals_zghygc_e200704005
source Alma/SFX Local Collection
subjects 分析方法
防浪堤
title An Advanced Probabilistic Neural Network for the Design of Breakwater Armor Blocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T09%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Advanced%20Probabilistic%20Neural%20Network%20for%20the%20Design%20of%20Breakwater%20Armor%20Blocks&rft.jtitle=China%20ocean%20engineering&rft.au=Dookie%20KIM%20Dong%20Hyawn%20KIM%20Seongkyu%20CHANG%20Gil%20Lim%20YOON&rft.date=2007-12&rft.volume=21&rft.issue=4&rft.spage=597&rft.epage=610&rft.pages=597-610&rft.issn=0890-5487&rft.eissn=2191-8945&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_chong%3Ezghygc_e200704005%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=26124089&rft_wanfj_id=zghygc_e200704005&rfr_iscdi=true