Enhancing the process of CO2 reduction reaction by using CTAB to construct contact ion pair in Li-CO2 battery

Aprotic Li-CO2 batteries have attracted growing interest due to their high theoretical energy density and its ability to use green house gas CO2 for energy storage. However, the poor ability of activating CO2 in organic electrolyte often leads to the premature termination of CO2 reduction reaction (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese chemical letters 2022-06, Vol.33 (6), p.2933-2936
Hauptverfasser: Ma, Shiyu, Lu, Youcai, Yao, Hongchang, Liu, Qingchao, Li, Zhongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2936
container_issue 6
container_start_page 2933
container_title Chinese chemical letters
container_volume 33
creator Ma, Shiyu
Lu, Youcai
Yao, Hongchang
Liu, Qingchao
Li, Zhongjun
description Aprotic Li-CO2 batteries have attracted growing interest due to their high theoretical energy density and its ability to use green house gas CO2 for energy storage. However, the poor ability of activating CO2 in organic electrolyte often leads to the premature termination of CO2 reduction reaction (CO2RR) directly. Here in this work, cetyl trimethyl ammonium bromide (CTAB) was introduced into a dimethyl sulfoxide (DMSO) based Li-CO2 battery for the first time to enhance the CO2RR. Significantly improved electrochemical performances, including reduced discharge over-potential and increased discharge capacity, can be achieved with the addition of CTAB. Ab initio molecular dynamics (AIMD) simulations show that quaternary ammonium group CTA+ can accelerate CO2 reduction process by forming more stable contact ion pair (CIP) with CO2–, reducing the energy barrier for CO2RR, thus improving the CO2 reduction process. In addition, adding CTA+ is also favorable for the solution-phase growth of discharge products because of the improved migration ability of stable CTA+-CO2– CIP in the electrolyte, which is beneficial for improving the utilization ratio of cathode. This work could facilitate the development of CO2RR by providing a novel understanding of CO2RR mechanism in organic system. A cation additive of CTA+can accelerate the CO2 reduction chemistry in Li-CO2 battery by forming stable contact ion pair with CO2– [CTA+-CO2– contact ion pair (CIP)] and reducing the energy barrier for CO2 reduction reaction (CO2RR). The CTA+-CO2– CIP can optimize the reaction path of the battery and makes the discharge products more easily formed in electrolyte, which is beneficial for improving the utilization rate of the cathode and thus increase the capacity of the Li-CO2 battery. [Display omitted]
doi_str_mv 10.1016/j.cclet.2021.10.089
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zghxkb202206021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zghxkb202206021</wanfj_id><els_id>S1001841721009293</els_id><sourcerecordid>zghxkb202206021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-31f98dbb9a17c8c458e8d30c717f5ce2b4c569034fc954a133da89c6d98287de3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwBCzemBJ8ycUZGEpULlKlLmW2nBOndWidynaB8vQ4lJnJv46-_1jnQ-iWkpQSWtz3KcBWh5QRRuMkJaI6QxMqSpHkVZGdx0wITURGy0t05X1PCBOCFxO0m9uNsmDsGoeNxns3gPYeDx2ulww73R4gmMHGpE6hOeKDH_F6NXvEYcAwWB9cxMYUIoVHbK-Mw8bihUnGRY0KQbvjNbro1Nbrm793it6e5qv6JVksn1_r2SIBVuQh4bSrRNs0laIlCMhyoUXLCZS07HLQrMkgLyrCsw6qPFOU81aJCoq2EkyUreZTdHfa-6lsp-xa9sPB2fij_F5vvt6b6ImRIsqKJD-R4Abvne7k3pmdckdJiRzdyl7-upWj23EY3cbWw6ml4xEfRjvpwWgLujVOQ5DtYP7t_wA20oMl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing the process of CO2 reduction reaction by using CTAB to construct contact ion pair in Li-CO2 battery</title><source>Elsevier ScienceDirect Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ma, Shiyu ; Lu, Youcai ; Yao, Hongchang ; Liu, Qingchao ; Li, Zhongjun</creator><creatorcontrib>Ma, Shiyu ; Lu, Youcai ; Yao, Hongchang ; Liu, Qingchao ; Li, Zhongjun</creatorcontrib><description>Aprotic Li-CO2 batteries have attracted growing interest due to their high theoretical energy density and its ability to use green house gas CO2 for energy storage. However, the poor ability of activating CO2 in organic electrolyte often leads to the premature termination of CO2 reduction reaction (CO2RR) directly. Here in this work, cetyl trimethyl ammonium bromide (CTAB) was introduced into a dimethyl sulfoxide (DMSO) based Li-CO2 battery for the first time to enhance the CO2RR. Significantly improved electrochemical performances, including reduced discharge over-potential and increased discharge capacity, can be achieved with the addition of CTAB. Ab initio molecular dynamics (AIMD) simulations show that quaternary ammonium group CTA+ can accelerate CO2 reduction process by forming more stable contact ion pair (CIP) with CO2–, reducing the energy barrier for CO2RR, thus improving the CO2 reduction process. In addition, adding CTA+ is also favorable for the solution-phase growth of discharge products because of the improved migration ability of stable CTA+-CO2– CIP in the electrolyte, which is beneficial for improving the utilization ratio of cathode. This work could facilitate the development of CO2RR by providing a novel understanding of CO2RR mechanism in organic system. A cation additive of CTA+can accelerate the CO2 reduction chemistry in Li-CO2 battery by forming stable contact ion pair with CO2– [CTA+-CO2– contact ion pair (CIP)] and reducing the energy barrier for CO2 reduction reaction (CO2RR). The CTA+-CO2– CIP can optimize the reaction path of the battery and makes the discharge products more easily formed in electrolyte, which is beneficial for improving the utilization rate of the cathode and thus increase the capacity of the Li-CO2 battery. [Display omitted]</description><identifier>ISSN: 1001-8417</identifier><identifier>EISSN: 1878-5964</identifier><identifier>DOI: 10.1016/j.cclet.2021.10.089</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>AIMD ; CO2 reduction reaction ; Contact ion pair ; Li-CO2 battery ; Quaternary ammonium additive</subject><ispartof>Chinese chemical letters, 2022-06, Vol.33 (6), p.2933-2936</ispartof><rights>2021</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-31f98dbb9a17c8c458e8d30c717f5ce2b4c569034fc954a133da89c6d98287de3</citedby><cites>FETCH-LOGICAL-c265t-31f98dbb9a17c8c458e8d30c717f5ce2b4c569034fc954a133da89c6d98287de3</cites><orcidid>0000-0001-6569-2739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zghxkb/zghxkb.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1001841721009293$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ma, Shiyu</creatorcontrib><creatorcontrib>Lu, Youcai</creatorcontrib><creatorcontrib>Yao, Hongchang</creatorcontrib><creatorcontrib>Liu, Qingchao</creatorcontrib><creatorcontrib>Li, Zhongjun</creatorcontrib><title>Enhancing the process of CO2 reduction reaction by using CTAB to construct contact ion pair in Li-CO2 battery</title><title>Chinese chemical letters</title><description>Aprotic Li-CO2 batteries have attracted growing interest due to their high theoretical energy density and its ability to use green house gas CO2 for energy storage. However, the poor ability of activating CO2 in organic electrolyte often leads to the premature termination of CO2 reduction reaction (CO2RR) directly. Here in this work, cetyl trimethyl ammonium bromide (CTAB) was introduced into a dimethyl sulfoxide (DMSO) based Li-CO2 battery for the first time to enhance the CO2RR. Significantly improved electrochemical performances, including reduced discharge over-potential and increased discharge capacity, can be achieved with the addition of CTAB. Ab initio molecular dynamics (AIMD) simulations show that quaternary ammonium group CTA+ can accelerate CO2 reduction process by forming more stable contact ion pair (CIP) with CO2–, reducing the energy barrier for CO2RR, thus improving the CO2 reduction process. In addition, adding CTA+ is also favorable for the solution-phase growth of discharge products because of the improved migration ability of stable CTA+-CO2– CIP in the electrolyte, which is beneficial for improving the utilization ratio of cathode. This work could facilitate the development of CO2RR by providing a novel understanding of CO2RR mechanism in organic system. A cation additive of CTA+can accelerate the CO2 reduction chemistry in Li-CO2 battery by forming stable contact ion pair with CO2– [CTA+-CO2– contact ion pair (CIP)] and reducing the energy barrier for CO2 reduction reaction (CO2RR). The CTA+-CO2– CIP can optimize the reaction path of the battery and makes the discharge products more easily formed in electrolyte, which is beneficial for improving the utilization rate of the cathode and thus increase the capacity of the Li-CO2 battery. [Display omitted]</description><subject>AIMD</subject><subject>CO2 reduction reaction</subject><subject>Contact ion pair</subject><subject>Li-CO2 battery</subject><subject>Quaternary ammonium additive</subject><issn>1001-8417</issn><issn>1878-5964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwBCzemBJ8ycUZGEpULlKlLmW2nBOndWidynaB8vQ4lJnJv46-_1jnQ-iWkpQSWtz3KcBWh5QRRuMkJaI6QxMqSpHkVZGdx0wITURGy0t05X1PCBOCFxO0m9uNsmDsGoeNxns3gPYeDx2ulww73R4gmMHGpE6hOeKDH_F6NXvEYcAwWB9cxMYUIoVHbK-Mw8bihUnGRY0KQbvjNbro1Nbrm793it6e5qv6JVksn1_r2SIBVuQh4bSrRNs0laIlCMhyoUXLCZS07HLQrMkgLyrCsw6qPFOU81aJCoq2EkyUreZTdHfa-6lsp-xa9sPB2fij_F5vvt6b6ImRIsqKJD-R4Abvne7k3pmdckdJiRzdyl7-upWj23EY3cbWw6ml4xEfRjvpwWgLujVOQ5DtYP7t_wA20oMl</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Ma, Shiyu</creator><creator>Lu, Youcai</creator><creator>Yao, Hongchang</creator><creator>Liu, Qingchao</creator><creator>Li, Zhongjun</creator><general>Elsevier B.V</general><general>Green Catalysis Center,and College of Chemistry,Zhengzhou University,Zhengzhou 450001,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0001-6569-2739</orcidid></search><sort><creationdate>20220601</creationdate><title>Enhancing the process of CO2 reduction reaction by using CTAB to construct contact ion pair in Li-CO2 battery</title><author>Ma, Shiyu ; Lu, Youcai ; Yao, Hongchang ; Liu, Qingchao ; Li, Zhongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-31f98dbb9a17c8c458e8d30c717f5ce2b4c569034fc954a133da89c6d98287de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AIMD</topic><topic>CO2 reduction reaction</topic><topic>Contact ion pair</topic><topic>Li-CO2 battery</topic><topic>Quaternary ammonium additive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Shiyu</creatorcontrib><creatorcontrib>Lu, Youcai</creatorcontrib><creatorcontrib>Yao, Hongchang</creatorcontrib><creatorcontrib>Liu, Qingchao</creatorcontrib><creatorcontrib>Li, Zhongjun</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese chemical letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Shiyu</au><au>Lu, Youcai</au><au>Yao, Hongchang</au><au>Liu, Qingchao</au><au>Li, Zhongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the process of CO2 reduction reaction by using CTAB to construct contact ion pair in Li-CO2 battery</atitle><jtitle>Chinese chemical letters</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>33</volume><issue>6</issue><spage>2933</spage><epage>2936</epage><pages>2933-2936</pages><issn>1001-8417</issn><eissn>1878-5964</eissn><abstract>Aprotic Li-CO2 batteries have attracted growing interest due to their high theoretical energy density and its ability to use green house gas CO2 for energy storage. However, the poor ability of activating CO2 in organic electrolyte often leads to the premature termination of CO2 reduction reaction (CO2RR) directly. Here in this work, cetyl trimethyl ammonium bromide (CTAB) was introduced into a dimethyl sulfoxide (DMSO) based Li-CO2 battery for the first time to enhance the CO2RR. Significantly improved electrochemical performances, including reduced discharge over-potential and increased discharge capacity, can be achieved with the addition of CTAB. Ab initio molecular dynamics (AIMD) simulations show that quaternary ammonium group CTA+ can accelerate CO2 reduction process by forming more stable contact ion pair (CIP) with CO2–, reducing the energy barrier for CO2RR, thus improving the CO2 reduction process. In addition, adding CTA+ is also favorable for the solution-phase growth of discharge products because of the improved migration ability of stable CTA+-CO2– CIP in the electrolyte, which is beneficial for improving the utilization ratio of cathode. This work could facilitate the development of CO2RR by providing a novel understanding of CO2RR mechanism in organic system. A cation additive of CTA+can accelerate the CO2 reduction chemistry in Li-CO2 battery by forming stable contact ion pair with CO2– [CTA+-CO2– contact ion pair (CIP)] and reducing the energy barrier for CO2 reduction reaction (CO2RR). The CTA+-CO2– CIP can optimize the reaction path of the battery and makes the discharge products more easily formed in electrolyte, which is beneficial for improving the utilization rate of the cathode and thus increase the capacity of the Li-CO2 battery. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cclet.2021.10.089</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6569-2739</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-8417
ispartof Chinese chemical letters, 2022-06, Vol.33 (6), p.2933-2936
issn 1001-8417
1878-5964
language eng
recordid cdi_wanfang_journals_zghxkb202206021
source Elsevier ScienceDirect Journals Complete; Alma/SFX Local Collection
subjects AIMD
CO2 reduction reaction
Contact ion pair
Li-CO2 battery
Quaternary ammonium additive
title Enhancing the process of CO2 reduction reaction by using CTAB to construct contact ion pair in Li-CO2 battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20process%20of%20CO2%20reduction%20reaction%20by%20using%20CTAB%20to%20construct%20contact%20ion%20pair%20in%20Li-CO2%20battery&rft.jtitle=Chinese%20chemical%20letters&rft.au=Ma,%20Shiyu&rft.date=2022-06-01&rft.volume=33&rft.issue=6&rft.spage=2933&rft.epage=2936&rft.pages=2933-2936&rft.issn=1001-8417&rft.eissn=1878-5964&rft_id=info:doi/10.1016/j.cclet.2021.10.089&rft_dat=%3Cwanfang_jour_cross%3Ezghxkb202206021%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zghxkb202206021&rft_els_id=S1001841721009293&rfr_iscdi=true