In-situ formed hierarchical transition metal oxide nanoarrays with rich antisite defects and oxygen vacancies for high-rate energy storage devices

Developing transition metal oxides (TMOs) with high energy, power, and long cycle lifetime for electric energy storage devices remains a critical challenge to date. Herein, we demonstrate a facile method that enables in-situ transformation of nickel cobalt oxide nanowire arrays (NiCoO NWA) into hier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese chemical letters 2022-05, Vol.33 (5), p.2669-2676
Hauptverfasser: Wang, Teng, Xu, Bo, Wang, You, Lei, Jiaqi, Qin, Wenjing, Gui, Ke, Ouyang, Chuying, Chen, Kai-Jie, Wang, Hongxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2676
container_issue 5
container_start_page 2669
container_title Chinese chemical letters
container_volume 33
creator Wang, Teng
Xu, Bo
Wang, You
Lei, Jiaqi
Qin, Wenjing
Gui, Ke
Ouyang, Chuying
Chen, Kai-Jie
Wang, Hongxia
description Developing transition metal oxides (TMOs) with high energy, power, and long cycle lifetime for electric energy storage devices remains a critical challenge to date. Herein, we demonstrate a facile method that enables in-situ transformation of nickel cobalt oxide nanowire arrays (NiCoO NWA) into hierarchical nanowire-nanosheet arrays (ac-NiCoO NWSA) for enhanced energy storage properties. More specifically, the method leads to formation of atomically thin nanosheets (only 2.0 nm) and creates abundant antisite defects and oxygen vacancies. Owing to these merits, the as-prepared ac-NiCoO NWSA electrode exhibits over five-fold higher specific capacity, superior rate capability (up to 100 A/g), and excellent cycling stability of 10,000 cycles at 50 A/g in alkaline electrolyte compared to pristine NiCoO NWA. Density functional theory (DFT) simulations elucidate the electrochemical activity enhancement mechanism of the TMOs. Moreover, our method triggers similar structural reconstruction phenomenon on other TMOs including ZnCo-, CoMn- and ZnNiCo-oxides, proving the universality of the method. Our findings provide a general method towards simultaneously manipulating the micro-morphologies and defects of TMOs for advanced energy storage devices. A facile electrochemical method is successfully employed to activate a series of battery-type multimetallic oxides nanoarrays, leading to dramatic micro-morphology change, rich antisite defects, and abundant oxygen vacancies in the final materials which achieve greatly enhanced electrochemical properties for hybrid supercapacitors. [Display omitted]
doi_str_mv 10.1016/j.cclet.2021.09.103
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zghxkb202205076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zghxkb202205076</wanfj_id><els_id>S1001841721008238</els_id><sourcerecordid>zghxkb202205076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-bc356dc3772aef3faac893eaf70a721a7065b20d2f1ebcc24d74ae8411aef8a13</originalsourceid><addsrcrecordid>eNp9kb1uGzEQhA9BAsR28gRp2Lk6hT-646lwERixY8CAG6cmVsvlHRWJF5C0bOUx8sRZWa5TkRh-w8HONs0XJRdKqv7rZoG4pbrQUquFXLFo3jVnarBD26365Xu-S6naYansx-a8lI2UehhMf9b8vUttifVJhDnvyIspUoaMU0TYipoh8WOck9hRZWF-iZ5EgjRDznAo4jnWSeSIk4BUI7MkPAXCWljwzB9GSmIPCAkjlWMKR4xTm4FRSpTHgyh1zjAenfuIVD41HwJsC31-Oy-anzffH69_tPcPt3fX3-5bNKar7RpN13s01mqgYAIADitDEKwEqxVY2XdrLb0OitaIeuntEogrUIwPoMxFc3n69xlSgDS6zfyUEye6P-P08ou9WstO2p5JcyIxz6VkCu53jjvIB6ekOy7AbdzrAtxxAU6uWDTsujq5iIfYc6-ucAcJycfMDTk_x__6_wFdepR_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In-situ formed hierarchical transition metal oxide nanoarrays with rich antisite defects and oxygen vacancies for high-rate energy storage devices</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Teng ; Xu, Bo ; Wang, You ; Lei, Jiaqi ; Qin, Wenjing ; Gui, Ke ; Ouyang, Chuying ; Chen, Kai-Jie ; Wang, Hongxia</creator><creatorcontrib>Wang, Teng ; Xu, Bo ; Wang, You ; Lei, Jiaqi ; Qin, Wenjing ; Gui, Ke ; Ouyang, Chuying ; Chen, Kai-Jie ; Wang, Hongxia</creatorcontrib><description>Developing transition metal oxides (TMOs) with high energy, power, and long cycle lifetime for electric energy storage devices remains a critical challenge to date. Herein, we demonstrate a facile method that enables in-situ transformation of nickel cobalt oxide nanowire arrays (NiCoO NWA) into hierarchical nanowire-nanosheet arrays (ac-NiCoO NWSA) for enhanced energy storage properties. More specifically, the method leads to formation of atomically thin nanosheets (only 2.0 nm) and creates abundant antisite defects and oxygen vacancies. Owing to these merits, the as-prepared ac-NiCoO NWSA electrode exhibits over five-fold higher specific capacity, superior rate capability (up to 100 A/g), and excellent cycling stability of 10,000 cycles at 50 A/g in alkaline electrolyte compared to pristine NiCoO NWA. Density functional theory (DFT) simulations elucidate the electrochemical activity enhancement mechanism of the TMOs. Moreover, our method triggers similar structural reconstruction phenomenon on other TMOs including ZnCo-, CoMn- and ZnNiCo-oxides, proving the universality of the method. Our findings provide a general method towards simultaneously manipulating the micro-morphologies and defects of TMOs for advanced energy storage devices. A facile electrochemical method is successfully employed to activate a series of battery-type multimetallic oxides nanoarrays, leading to dramatic micro-morphology change, rich antisite defects, and abundant oxygen vacancies in the final materials which achieve greatly enhanced electrochemical properties for hybrid supercapacitors. [Display omitted]</description><identifier>ISSN: 1001-8417</identifier><identifier>EISSN: 1878-5964</identifier><identifier>DOI: 10.1016/j.cclet.2021.09.103</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Antisite defects ; High-rate ; Hybrid supercapacitors ; In-situ transformation ; Oxygen vacancy ; Transition metal oxides</subject><ispartof>Chinese chemical letters, 2022-05, Vol.33 (5), p.2669-2676</ispartof><rights>2021</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-bc356dc3772aef3faac893eaf70a721a7065b20d2f1ebcc24d74ae8411aef8a13</citedby><cites>FETCH-LOGICAL-c335t-bc356dc3772aef3faac893eaf70a721a7065b20d2f1ebcc24d74ae8411aef8a13</cites><orcidid>0000-0002-4771-126X ; 0000-0001-7581-6571 ; 0000-0002-5358-7920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zghxkb/zghxkb.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1001841721008238$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Wang, You</creatorcontrib><creatorcontrib>Lei, Jiaqi</creatorcontrib><creatorcontrib>Qin, Wenjing</creatorcontrib><creatorcontrib>Gui, Ke</creatorcontrib><creatorcontrib>Ouyang, Chuying</creatorcontrib><creatorcontrib>Chen, Kai-Jie</creatorcontrib><creatorcontrib>Wang, Hongxia</creatorcontrib><title>In-situ formed hierarchical transition metal oxide nanoarrays with rich antisite defects and oxygen vacancies for high-rate energy storage devices</title><title>Chinese chemical letters</title><description>Developing transition metal oxides (TMOs) with high energy, power, and long cycle lifetime for electric energy storage devices remains a critical challenge to date. Herein, we demonstrate a facile method that enables in-situ transformation of nickel cobalt oxide nanowire arrays (NiCoO NWA) into hierarchical nanowire-nanosheet arrays (ac-NiCoO NWSA) for enhanced energy storage properties. More specifically, the method leads to formation of atomically thin nanosheets (only 2.0 nm) and creates abundant antisite defects and oxygen vacancies. Owing to these merits, the as-prepared ac-NiCoO NWSA electrode exhibits over five-fold higher specific capacity, superior rate capability (up to 100 A/g), and excellent cycling stability of 10,000 cycles at 50 A/g in alkaline electrolyte compared to pristine NiCoO NWA. Density functional theory (DFT) simulations elucidate the electrochemical activity enhancement mechanism of the TMOs. Moreover, our method triggers similar structural reconstruction phenomenon on other TMOs including ZnCo-, CoMn- and ZnNiCo-oxides, proving the universality of the method. Our findings provide a general method towards simultaneously manipulating the micro-morphologies and defects of TMOs for advanced energy storage devices. A facile electrochemical method is successfully employed to activate a series of battery-type multimetallic oxides nanoarrays, leading to dramatic micro-morphology change, rich antisite defects, and abundant oxygen vacancies in the final materials which achieve greatly enhanced electrochemical properties for hybrid supercapacitors. [Display omitted]</description><subject>Antisite defects</subject><subject>High-rate</subject><subject>Hybrid supercapacitors</subject><subject>In-situ transformation</subject><subject>Oxygen vacancy</subject><subject>Transition metal oxides</subject><issn>1001-8417</issn><issn>1878-5964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kb1uGzEQhA9BAsR28gRp2Lk6hT-646lwERixY8CAG6cmVsvlHRWJF5C0bOUx8sRZWa5TkRh-w8HONs0XJRdKqv7rZoG4pbrQUquFXLFo3jVnarBD26365Xu-S6naYansx-a8lI2UehhMf9b8vUttifVJhDnvyIspUoaMU0TYipoh8WOck9hRZWF-iZ5EgjRDznAo4jnWSeSIk4BUI7MkPAXCWljwzB9GSmIPCAkjlWMKR4xTm4FRSpTHgyh1zjAenfuIVD41HwJsC31-Oy-anzffH69_tPcPt3fX3-5bNKar7RpN13s01mqgYAIADitDEKwEqxVY2XdrLb0OitaIeuntEogrUIwPoMxFc3n69xlSgDS6zfyUEye6P-P08ou9WstO2p5JcyIxz6VkCu53jjvIB6ekOy7AbdzrAtxxAU6uWDTsujq5iIfYc6-ucAcJycfMDTk_x__6_wFdepR_</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Wang, Teng</creator><creator>Xu, Bo</creator><creator>Wang, You</creator><creator>Lei, Jiaqi</creator><creator>Qin, Wenjing</creator><creator>Gui, Ke</creator><creator>Ouyang, Chuying</creator><creator>Chen, Kai-Jie</creator><creator>Wang, Hongxia</creator><general>Elsevier B.V</general><general>Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology,Xi'an Key Laboratory of Functional Organic Porous Materials,Department of Chemistry,School of Chemistry and Chemical Engineering,Northwestern Polytechnical University,Xi'an 710072,China</general><general>School of Chemistry and Physics,Faculty of Science,Queensland University of Technology,Brisbane,QLD 4001,Australia%Department of Physics,Laboratory of Computational Materials Physics,Jiangxi Normal University,Nanchang 330022,China%Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology,Xi'an Key Laboratory of Functional Organic Porous Materials,Department of Chemistry,School of Chemistry and Chemical Engineering,Northwestern Polytechnical University,Xi'an 710072,China%School of Chemistry and Physics,Faculty of Science,Queensland University of Technology,Brisbane,QLD 4001,Australia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0002-4771-126X</orcidid><orcidid>https://orcid.org/0000-0001-7581-6571</orcidid><orcidid>https://orcid.org/0000-0002-5358-7920</orcidid></search><sort><creationdate>20220501</creationdate><title>In-situ formed hierarchical transition metal oxide nanoarrays with rich antisite defects and oxygen vacancies for high-rate energy storage devices</title><author>Wang, Teng ; Xu, Bo ; Wang, You ; Lei, Jiaqi ; Qin, Wenjing ; Gui, Ke ; Ouyang, Chuying ; Chen, Kai-Jie ; Wang, Hongxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-bc356dc3772aef3faac893eaf70a721a7065b20d2f1ebcc24d74ae8411aef8a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antisite defects</topic><topic>High-rate</topic><topic>Hybrid supercapacitors</topic><topic>In-situ transformation</topic><topic>Oxygen vacancy</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Wang, You</creatorcontrib><creatorcontrib>Lei, Jiaqi</creatorcontrib><creatorcontrib>Qin, Wenjing</creatorcontrib><creatorcontrib>Gui, Ke</creatorcontrib><creatorcontrib>Ouyang, Chuying</creatorcontrib><creatorcontrib>Chen, Kai-Jie</creatorcontrib><creatorcontrib>Wang, Hongxia</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese chemical letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Teng</au><au>Xu, Bo</au><au>Wang, You</au><au>Lei, Jiaqi</au><au>Qin, Wenjing</au><au>Gui, Ke</au><au>Ouyang, Chuying</au><au>Chen, Kai-Jie</au><au>Wang, Hongxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ formed hierarchical transition metal oxide nanoarrays with rich antisite defects and oxygen vacancies for high-rate energy storage devices</atitle><jtitle>Chinese chemical letters</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>33</volume><issue>5</issue><spage>2669</spage><epage>2676</epage><pages>2669-2676</pages><issn>1001-8417</issn><eissn>1878-5964</eissn><abstract>Developing transition metal oxides (TMOs) with high energy, power, and long cycle lifetime for electric energy storage devices remains a critical challenge to date. Herein, we demonstrate a facile method that enables in-situ transformation of nickel cobalt oxide nanowire arrays (NiCoO NWA) into hierarchical nanowire-nanosheet arrays (ac-NiCoO NWSA) for enhanced energy storage properties. More specifically, the method leads to formation of atomically thin nanosheets (only 2.0 nm) and creates abundant antisite defects and oxygen vacancies. Owing to these merits, the as-prepared ac-NiCoO NWSA electrode exhibits over five-fold higher specific capacity, superior rate capability (up to 100 A/g), and excellent cycling stability of 10,000 cycles at 50 A/g in alkaline electrolyte compared to pristine NiCoO NWA. Density functional theory (DFT) simulations elucidate the electrochemical activity enhancement mechanism of the TMOs. Moreover, our method triggers similar structural reconstruction phenomenon on other TMOs including ZnCo-, CoMn- and ZnNiCo-oxides, proving the universality of the method. Our findings provide a general method towards simultaneously manipulating the micro-morphologies and defects of TMOs for advanced energy storage devices. A facile electrochemical method is successfully employed to activate a series of battery-type multimetallic oxides nanoarrays, leading to dramatic micro-morphology change, rich antisite defects, and abundant oxygen vacancies in the final materials which achieve greatly enhanced electrochemical properties for hybrid supercapacitors. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cclet.2021.09.103</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4771-126X</orcidid><orcidid>https://orcid.org/0000-0001-7581-6571</orcidid><orcidid>https://orcid.org/0000-0002-5358-7920</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-8417
ispartof Chinese chemical letters, 2022-05, Vol.33 (5), p.2669-2676
issn 1001-8417
1878-5964
language eng
recordid cdi_wanfang_journals_zghxkb202205076
source Elsevier ScienceDirect Journals; Alma/SFX Local Collection
subjects Antisite defects
High-rate
Hybrid supercapacitors
In-situ transformation
Oxygen vacancy
Transition metal oxides
title In-situ formed hierarchical transition metal oxide nanoarrays with rich antisite defects and oxygen vacancies for high-rate energy storage devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20formed%20hierarchical%20transition%20metal%20oxide%20nanoarrays%20with%20rich%20antisite%20defects%20and%20oxygen%20vacancies%20for%20high-rate%20energy%20storage%20devices&rft.jtitle=Chinese%20chemical%20letters&rft.au=Wang,%20Teng&rft.date=2022-05-01&rft.volume=33&rft.issue=5&rft.spage=2669&rft.epage=2676&rft.pages=2669-2676&rft.issn=1001-8417&rft.eissn=1878-5964&rft_id=info:doi/10.1016/j.cclet.2021.09.103&rft_dat=%3Cwanfang_jour_cross%3Ezghxkb202205076%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zghxkb202205076&rft_els_id=S1001841721008238&rfr_iscdi=true