Cucurbit[6]uril functionalized gold nanoparticles and electrode for the detection of metformin drug

Based on the host-guest molecular recognition capability of cucurbit[6]uril (CB[6]) modified on the gold surface, sensitive spectrophotometric and electrochemical methods for the detection of metformin (MET) have been developed. The molecular recognition between cucurbit[7]uril (CB[7]) or CB[6] and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese chemical letters 2022-01, Vol.33 (1), p.283-287
Hauptverfasser: Wang, Yaqi, Ding, Ling, Yu, Hui, Liang, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the host-guest molecular recognition capability of cucurbit[6]uril (CB[6]) modified on the gold surface, sensitive spectrophotometric and electrochemical methods for the detection of metformin (MET) have been developed. The molecular recognition between cucurbit[7]uril (CB[7]) or CB[6] and MET is initially demonstrated and the related recognition mechanism is further deliberated. First, CB[6]-modified gold nanoparticles (AuNPs/CB[6]) were synthesized and then characterized by ultraviolet visible light spectrum (UV–vis) and transmission electron microscopy (TEM). The aggregation of AuNPs/CB[6] prompted by MET triggered changes of color and the absorption spectrum, that explored for the visual identification and spectrophotometric determination of MET. Under the optimized detection conditions, the UV–vis spectrometry had a good linear relationship in the range of 6–700 µmol/L, and the detection limit was 2 µmol/L. In addition, a single-layer CB[6]-modified gold electrode (GE-CB[6]) detection system for MET was constructed. As the concentration of MET in the solution continues to increase, the charge transfer resistance (Rct) in the Nyquist diagram of the electrochemical impedance method (EIS) continues to increase. In the concentration range from 10 pmol/L to 20 nmol/L, the logarithm of the MET concentration has a good linear relationship with Rct, and the detection limit of this method is 1.35 pmol/L. Both methods have good concentration sensitivity to MET in different concentration ranges, providing a powerful tool for the detection of MET. Cucurbit[6]uril modified gold nanoparticles and gold electrode (CB[6]-GE) were prepared for effective spectrophotometric and electrochemical determination of metformin (MET) drug. [Display omitted]
ISSN:1001-8417
1878-5964
DOI:10.1016/j.cclet.2021.06.044