Phenylenediamine-formaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors

Benefiting from the ultrahigh surface area (2044 m2/g), suitable pore size and moderate N-doping, the N-doped hollow carbon spheres (NHCSs) demonstrate a high specific capacitance of 234 F/g in ionic liquid electrolyte (EMIBF4). The NHCSs-based symmetric supercapacitor achieves an ultrahigh energy d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese chemical letters 2021-01, Vol.32 (1), p.184-189
Hauptverfasser: Xu, Ming, Liu, Yuheng, Yu, Qiang, Feng, Shihao, Zhou, Liang, Mai, Liqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue 1
container_start_page 184
container_title Chinese chemical letters
container_volume 32
creator Xu, Ming
Liu, Yuheng
Yu, Qiang
Feng, Shihao
Zhou, Liang
Mai, Liqiang
description Benefiting from the ultrahigh surface area (2044 m2/g), suitable pore size and moderate N-doping, the N-doped hollow carbon spheres (NHCSs) demonstrate a high specific capacitance of 234 F/g in ionic liquid electrolyte (EMIBF4). The NHCSs-based symmetric supercapacitor achieves an ultrahigh energy density of 114.8 Wh/kg (based on the mass of active material). [Display omitted] Porous carbon spheres represent an ideal family of electrode materials for supercapacitors because of the high surface area, ideal conductivity, negligible aggregation, and ability to achieve space efficient packing. However, the development of new synthetic methods towards porous carbon spheres still remains a great challenge. Herein, N-doped hollow carbon spheres with an ultrahigh surface area of 2044 m2/g have been designed based on the phenylenediamine-formaldehyde chemistry. When applied in symmetric supercapacitors with ionic electrolyte (EMIBF4), the obtained N-doped hollow carbon spheres demonstrate a high capacitance of 234 F/g, affording an ultrahigh energy density of 114.8 Wh/kg. Excellent cycling stability has also been achieved. The impressive capacitive performances make the phenylenediamine-formaldehyde resin derived N-doped carbon a promising candidate electrode material for supercapacitors.
doi_str_mv 10.1016/j.cclet.2020.11.004
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zghxkb202101033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zghxkb202101033</wanfj_id><els_id>S1001841720306367</els_id><sourcerecordid>zghxkb202101033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-f0417713b1913a7c84e33d4a1284f49eaece9f3200572449332a0e4a1492900f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwC1iyMTmcY7dJBgZU8SVVwACz5dqXxCW1IzttCb8eQ5mZ7nT3vvfxJMklhYwCnV-vM6U6HLIc8lihGQA_Sia0LEoyq-b8OOYAlJScFqfJWQhrgLws2XySbF9btGOHFrWRG2OR1M5vZKexHTWmqsWNCYMfU43e7FCnz0S7PsbWdZ3bp0r6lbNp6Fv0GNJoTlvTtCQO9M1INNpghjEN2x69kr1UZnA-nCcntewCXvzFafJ-f_e2eCTLl4enxe2SKMZmA6khHlxQtqIVZbJQJUfGNJc0L3nNK5SosKpZDjArcs4rxnIJGPu8yiuAmk2Tq8PcvbS1tI1Yu623caP4atrPj1XkFfkBY1HJDkrlXQgea9F7s5F-FBTED2OxFr-MxQ9jQamIjKPr5uDC-MTOoBdBGbQqwvSoBqGd-df_DQXXh_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phenylenediamine-formaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>Xu, Ming ; Liu, Yuheng ; Yu, Qiang ; Feng, Shihao ; Zhou, Liang ; Mai, Liqiang</creator><creatorcontrib>Xu, Ming ; Liu, Yuheng ; Yu, Qiang ; Feng, Shihao ; Zhou, Liang ; Mai, Liqiang</creatorcontrib><description>Benefiting from the ultrahigh surface area (2044 m2/g), suitable pore size and moderate N-doping, the N-doped hollow carbon spheres (NHCSs) demonstrate a high specific capacitance of 234 F/g in ionic liquid electrolyte (EMIBF4). The NHCSs-based symmetric supercapacitor achieves an ultrahigh energy density of 114.8 Wh/kg (based on the mass of active material). [Display omitted] Porous carbon spheres represent an ideal family of electrode materials for supercapacitors because of the high surface area, ideal conductivity, negligible aggregation, and ability to achieve space efficient packing. However, the development of new synthetic methods towards porous carbon spheres still remains a great challenge. Herein, N-doped hollow carbon spheres with an ultrahigh surface area of 2044 m2/g have been designed based on the phenylenediamine-formaldehyde chemistry. When applied in symmetric supercapacitors with ionic electrolyte (EMIBF4), the obtained N-doped hollow carbon spheres demonstrate a high capacitance of 234 F/g, affording an ultrahigh energy density of 114.8 Wh/kg. Excellent cycling stability has also been achieved. The impressive capacitive performances make the phenylenediamine-formaldehyde resin derived N-doped carbon a promising candidate electrode material for supercapacitors.</description><identifier>ISSN: 1001-8417</identifier><identifier>EISSN: 1878-5964</identifier><identifier>DOI: 10.1016/j.cclet.2020.11.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Energy density ; Hollow structure ; Ionic electrolyte ; Porous carbon spheres ; Supercapacitors</subject><ispartof>Chinese chemical letters, 2021-01, Vol.32 (1), p.184-189</ispartof><rights>2021</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-f0417713b1913a7c84e33d4a1284f49eaece9f3200572449332a0e4a1492900f3</citedby><cites>FETCH-LOGICAL-c335t-f0417713b1913a7c84e33d4a1284f49eaece9f3200572449332a0e4a1492900f3</cites><orcidid>0000-0001-6756-3578 ; 0000-0003-4259-7725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zghxkb/zghxkb.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cclet.2020.11.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Liu, Yuheng</creatorcontrib><creatorcontrib>Yu, Qiang</creatorcontrib><creatorcontrib>Feng, Shihao</creatorcontrib><creatorcontrib>Zhou, Liang</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><title>Phenylenediamine-formaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors</title><title>Chinese chemical letters</title><description>Benefiting from the ultrahigh surface area (2044 m2/g), suitable pore size and moderate N-doping, the N-doped hollow carbon spheres (NHCSs) demonstrate a high specific capacitance of 234 F/g in ionic liquid electrolyte (EMIBF4). The NHCSs-based symmetric supercapacitor achieves an ultrahigh energy density of 114.8 Wh/kg (based on the mass of active material). [Display omitted] Porous carbon spheres represent an ideal family of electrode materials for supercapacitors because of the high surface area, ideal conductivity, negligible aggregation, and ability to achieve space efficient packing. However, the development of new synthetic methods towards porous carbon spheres still remains a great challenge. Herein, N-doped hollow carbon spheres with an ultrahigh surface area of 2044 m2/g have been designed based on the phenylenediamine-formaldehyde chemistry. When applied in symmetric supercapacitors with ionic electrolyte (EMIBF4), the obtained N-doped hollow carbon spheres demonstrate a high capacitance of 234 F/g, affording an ultrahigh energy density of 114.8 Wh/kg. Excellent cycling stability has also been achieved. The impressive capacitive performances make the phenylenediamine-formaldehyde resin derived N-doped carbon a promising candidate electrode material for supercapacitors.</description><subject>Energy density</subject><subject>Hollow structure</subject><subject>Ionic electrolyte</subject><subject>Porous carbon spheres</subject><subject>Supercapacitors</subject><issn>1001-8417</issn><issn>1878-5964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqXwC1iyMTmcY7dJBgZU8SVVwACz5dqXxCW1IzttCb8eQ5mZ7nT3vvfxJMklhYwCnV-vM6U6HLIc8lihGQA_Sia0LEoyq-b8OOYAlJScFqfJWQhrgLws2XySbF9btGOHFrWRG2OR1M5vZKexHTWmqsWNCYMfU43e7FCnz0S7PsbWdZ3bp0r6lbNp6Fv0GNJoTlvTtCQO9M1INNpghjEN2x69kr1UZnA-nCcntewCXvzFafJ-f_e2eCTLl4enxe2SKMZmA6khHlxQtqIVZbJQJUfGNJc0L3nNK5SosKpZDjArcs4rxnIJGPu8yiuAmk2Tq8PcvbS1tI1Yu623caP4atrPj1XkFfkBY1HJDkrlXQgea9F7s5F-FBTED2OxFr-MxQ9jQamIjKPr5uDC-MTOoBdBGbQqwvSoBqGd-df_DQXXh_k</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Xu, Ming</creator><creator>Liu, Yuheng</creator><creator>Yu, Qiang</creator><creator>Feng, Shihao</creator><creator>Zhou, Liang</creator><creator>Mai, Liqiang</creator><general>Elsevier B.V</general><general>State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0001-6756-3578</orcidid><orcidid>https://orcid.org/0000-0003-4259-7725</orcidid></search><sort><creationdate>202101</creationdate><title>Phenylenediamine-formaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors</title><author>Xu, Ming ; Liu, Yuheng ; Yu, Qiang ; Feng, Shihao ; Zhou, Liang ; Mai, Liqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-f0417713b1913a7c84e33d4a1284f49eaece9f3200572449332a0e4a1492900f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy density</topic><topic>Hollow structure</topic><topic>Ionic electrolyte</topic><topic>Porous carbon spheres</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Liu, Yuheng</creatorcontrib><creatorcontrib>Yu, Qiang</creatorcontrib><creatorcontrib>Feng, Shihao</creatorcontrib><creatorcontrib>Zhou, Liang</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese chemical letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ming</au><au>Liu, Yuheng</au><au>Yu, Qiang</au><au>Feng, Shihao</au><au>Zhou, Liang</au><au>Mai, Liqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenylenediamine-formaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors</atitle><jtitle>Chinese chemical letters</jtitle><date>2021-01</date><risdate>2021</risdate><volume>32</volume><issue>1</issue><spage>184</spage><epage>189</epage><pages>184-189</pages><issn>1001-8417</issn><eissn>1878-5964</eissn><abstract>Benefiting from the ultrahigh surface area (2044 m2/g), suitable pore size and moderate N-doping, the N-doped hollow carbon spheres (NHCSs) demonstrate a high specific capacitance of 234 F/g in ionic liquid electrolyte (EMIBF4). The NHCSs-based symmetric supercapacitor achieves an ultrahigh energy density of 114.8 Wh/kg (based on the mass of active material). [Display omitted] Porous carbon spheres represent an ideal family of electrode materials for supercapacitors because of the high surface area, ideal conductivity, negligible aggregation, and ability to achieve space efficient packing. However, the development of new synthetic methods towards porous carbon spheres still remains a great challenge. Herein, N-doped hollow carbon spheres with an ultrahigh surface area of 2044 m2/g have been designed based on the phenylenediamine-formaldehyde chemistry. When applied in symmetric supercapacitors with ionic electrolyte (EMIBF4), the obtained N-doped hollow carbon spheres demonstrate a high capacitance of 234 F/g, affording an ultrahigh energy density of 114.8 Wh/kg. Excellent cycling stability has also been achieved. The impressive capacitive performances make the phenylenediamine-formaldehyde resin derived N-doped carbon a promising candidate electrode material for supercapacitors.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cclet.2020.11.004</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6756-3578</orcidid><orcidid>https://orcid.org/0000-0003-4259-7725</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-8417
ispartof Chinese chemical letters, 2021-01, Vol.32 (1), p.184-189
issn 1001-8417
1878-5964
language eng
recordid cdi_wanfang_journals_zghxkb202101033
source Elsevier ScienceDirect Journals; Alma/SFX Local Collection
subjects Energy density
Hollow structure
Ionic electrolyte
Porous carbon spheres
Supercapacitors
title Phenylenediamine-formaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenylenediamine-formaldehyde%20chemistry%20derived%20N-doped%20hollow%20carbon%20spheres%20for%20high-energy-density%20supercapacitors&rft.jtitle=Chinese%20chemical%20letters&rft.au=Xu,%20Ming&rft.date=2021-01&rft.volume=32&rft.issue=1&rft.spage=184&rft.epage=189&rft.pages=184-189&rft.issn=1001-8417&rft.eissn=1878-5964&rft_id=info:doi/10.1016/j.cclet.2020.11.004&rft_dat=%3Cwanfang_jour_cross%3Ezghxkb202101033%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zghxkb202101033&rft_els_id=S1001841720306367&rfr_iscdi=true