Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal
Activity and growth of SDAD bacteria are affected by factors such as carbon sources, xenobiotics (e.g., Heavy mental and antibiotics) and environmental parameters (e.g., temperature, dissolved oxygen, salinity, etc.). Given appropriate working condition, SDAD may exhibit more powerfully not only in...
Gespeichert in:
Veröffentlicht in: | Chinese chemical letters 2020-10, Vol.31 (10), p.2567-2574 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2574 |
---|---|
container_issue | 10 |
container_start_page | 2567 |
container_title | Chinese chemical letters |
container_volume | 31 |
creator | Wang, Jiao-Jiao Huang, Bao-Cheng Li, Jun Jin, Ren-Cun |
description | Activity and growth of SDAD bacteria are affected by factors such as carbon sources, xenobiotics (e.g., Heavy mental and antibiotics) and environmental parameters (e.g., temperature, dissolved oxygen, salinity, etc.). Given appropriate working condition, SDAD may exhibit more powerfully not only in utilizing the N and S substrates, but also minimizing the adverse effects, which perfect its practical application in low C/N ratio wastewater treatment, S0 reclamation and energy harvest, multi-nutrients removal and coupling with other biological nitrogen removal process such as anammox.
[Display omitted]
Sulfur-driven autotrophic denitrification (SDAD), a process suited for the treatment of nitrogen and sulfur-polluted wastewater without extra supplement of organic carbon, is a promising biological nitrogen removal process. However, the SDAD process was affected by many factors such as various electron donors, organic carbon and exogenous substances (e.g., antibiotics and heavy metal), which prevent further application. Thus, we conducted a detailed review of previous studies on such influence factors and its current application. Besides, a comparative analysis was adopted to recognize the current challenges and future needs for feasible application, so as to ultimately perfect the SDAD process and extend its application scope. |
doi_str_mv | 10.1016/j.cclet.2020.07.036 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zghxkb202010005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zghxkb202010005</wanfj_id><els_id>S1001841720304289</els_id><sourcerecordid>zghxkb202010005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2505-53e918ec8e6b0c96a83457d7c36be58cb4f88ca3f6c95850fda066376ba124783</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1iyAUPCOY4dZ2CoWr6kSgzAbBzHbh1Su3LS8vHrcSkzk8-697nTPQidY8gwYHbdZkp1eshyyCGDMgPCDtAI85KntGLFYawBcMoLXB6jk75vAXLOCRuht0mzlU7pPpGuSdRSdp12i_j1Juk3ndmEtAl2q10iN4Mfgl8vrUoa7ewQrLFKDta75PJ5NpldJcaHZNfwi5gPeuW3sjtFR0Z2vT77e8fo9e72ZfqQzp_uH6eTeapyCjSlRFeYa8U1q0FVTHJS0LIpFWG1plzVheFcSWKYqiinYBoJjJGS1RLnRcnJGF3s535IZ6RbiNZvgosbxfdi-fle79RECUBjkuyTKvi-D9qIdbArGb4EBrHTKVrxq1PsGAGliDojdbOndDxia3UQvbI6mmts0GoQjbf_8j9Uqn-O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal</title><source>Elsevier ScienceDirect Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Jiao-Jiao ; Huang, Bao-Cheng ; Li, Jun ; Jin, Ren-Cun</creator><creatorcontrib>Wang, Jiao-Jiao ; Huang, Bao-Cheng ; Li, Jun ; Jin, Ren-Cun</creatorcontrib><description>Activity and growth of SDAD bacteria are affected by factors such as carbon sources, xenobiotics (e.g., Heavy mental and antibiotics) and environmental parameters (e.g., temperature, dissolved oxygen, salinity, etc.). Given appropriate working condition, SDAD may exhibit more powerfully not only in utilizing the N and S substrates, but also minimizing the adverse effects, which perfect its practical application in low C/N ratio wastewater treatment, S0 reclamation and energy harvest, multi-nutrients removal and coupling with other biological nitrogen removal process such as anammox.
[Display omitted]
Sulfur-driven autotrophic denitrification (SDAD), a process suited for the treatment of nitrogen and sulfur-polluted wastewater without extra supplement of organic carbon, is a promising biological nitrogen removal process. However, the SDAD process was affected by many factors such as various electron donors, organic carbon and exogenous substances (e.g., antibiotics and heavy metal), which prevent further application. Thus, we conducted a detailed review of previous studies on such influence factors and its current application. Besides, a comparative analysis was adopted to recognize the current challenges and future needs for feasible application, so as to ultimately perfect the SDAD process and extend its application scope.</description><identifier>ISSN: 1001-8417</identifier><identifier>EISSN: 1878-5964</identifier><identifier>DOI: 10.1016/j.cclet.2020.07.036</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Anammox ; Biological nitrogen removal ; Microbial fuel cell ; Mixotrophic denitrification ; Sulfur-driven autotrophic denitrification ; Sulfur-oxidizing bacteria (SOB)</subject><ispartof>Chinese chemical letters, 2020-10, Vol.31 (10), p.2567-2574</ispartof><rights>2020 The Author</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2505-53e918ec8e6b0c96a83457d7c36be58cb4f88ca3f6c95850fda066376ba124783</citedby><cites>FETCH-LOGICAL-c2505-53e918ec8e6b0c96a83457d7c36be58cb4f88ca3f6c95850fda066376ba124783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zghxkb/zghxkb.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1001841720304289$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Wang, Jiao-Jiao</creatorcontrib><creatorcontrib>Huang, Bao-Cheng</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Jin, Ren-Cun</creatorcontrib><title>Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal</title><title>Chinese chemical letters</title><description>Activity and growth of SDAD bacteria are affected by factors such as carbon sources, xenobiotics (e.g., Heavy mental and antibiotics) and environmental parameters (e.g., temperature, dissolved oxygen, salinity, etc.). Given appropriate working condition, SDAD may exhibit more powerfully not only in utilizing the N and S substrates, but also minimizing the adverse effects, which perfect its practical application in low C/N ratio wastewater treatment, S0 reclamation and energy harvest, multi-nutrients removal and coupling with other biological nitrogen removal process such as anammox.
[Display omitted]
Sulfur-driven autotrophic denitrification (SDAD), a process suited for the treatment of nitrogen and sulfur-polluted wastewater without extra supplement of organic carbon, is a promising biological nitrogen removal process. However, the SDAD process was affected by many factors such as various electron donors, organic carbon and exogenous substances (e.g., antibiotics and heavy metal), which prevent further application. Thus, we conducted a detailed review of previous studies on such influence factors and its current application. Besides, a comparative analysis was adopted to recognize the current challenges and future needs for feasible application, so as to ultimately perfect the SDAD process and extend its application scope.</description><subject>Anammox</subject><subject>Biological nitrogen removal</subject><subject>Microbial fuel cell</subject><subject>Mixotrophic denitrification</subject><subject>Sulfur-driven autotrophic denitrification</subject><subject>Sulfur-oxidizing bacteria (SOB)</subject><issn>1001-8417</issn><issn>1878-5964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1iyAUPCOY4dZ2CoWr6kSgzAbBzHbh1Su3LS8vHrcSkzk8-697nTPQidY8gwYHbdZkp1eshyyCGDMgPCDtAI85KntGLFYawBcMoLXB6jk75vAXLOCRuht0mzlU7pPpGuSdRSdp12i_j1Juk3ndmEtAl2q10iN4Mfgl8vrUoa7ewQrLFKDta75PJ5NpldJcaHZNfwi5gPeuW3sjtFR0Z2vT77e8fo9e72ZfqQzp_uH6eTeapyCjSlRFeYa8U1q0FVTHJS0LIpFWG1plzVheFcSWKYqiinYBoJjJGS1RLnRcnJGF3s535IZ6RbiNZvgosbxfdi-fle79RECUBjkuyTKvi-D9qIdbArGb4EBrHTKVrxq1PsGAGliDojdbOndDxia3UQvbI6mmts0GoQjbf_8j9Uqn-O</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wang, Jiao-Jiao</creator><creator>Huang, Bao-Cheng</creator><creator>Li, Jun</creator><creator>Jin, Ren-Cun</creator><general>Elsevier B.V</general><general>Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China</general><general>Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China%Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China%Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20201001</creationdate><title>Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal</title><author>Wang, Jiao-Jiao ; Huang, Bao-Cheng ; Li, Jun ; Jin, Ren-Cun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2505-53e918ec8e6b0c96a83457d7c36be58cb4f88ca3f6c95850fda066376ba124783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anammox</topic><topic>Biological nitrogen removal</topic><topic>Microbial fuel cell</topic><topic>Mixotrophic denitrification</topic><topic>Sulfur-driven autotrophic denitrification</topic><topic>Sulfur-oxidizing bacteria (SOB)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiao-Jiao</creatorcontrib><creatorcontrib>Huang, Bao-Cheng</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Jin, Ren-Cun</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese chemical letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiao-Jiao</au><au>Huang, Bao-Cheng</au><au>Li, Jun</au><au>Jin, Ren-Cun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal</atitle><jtitle>Chinese chemical letters</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>31</volume><issue>10</issue><spage>2567</spage><epage>2574</epage><pages>2567-2574</pages><issn>1001-8417</issn><eissn>1878-5964</eissn><abstract>Activity and growth of SDAD bacteria are affected by factors such as carbon sources, xenobiotics (e.g., Heavy mental and antibiotics) and environmental parameters (e.g., temperature, dissolved oxygen, salinity, etc.). Given appropriate working condition, SDAD may exhibit more powerfully not only in utilizing the N and S substrates, but also minimizing the adverse effects, which perfect its practical application in low C/N ratio wastewater treatment, S0 reclamation and energy harvest, multi-nutrients removal and coupling with other biological nitrogen removal process such as anammox.
[Display omitted]
Sulfur-driven autotrophic denitrification (SDAD), a process suited for the treatment of nitrogen and sulfur-polluted wastewater without extra supplement of organic carbon, is a promising biological nitrogen removal process. However, the SDAD process was affected by many factors such as various electron donors, organic carbon and exogenous substances (e.g., antibiotics and heavy metal), which prevent further application. Thus, we conducted a detailed review of previous studies on such influence factors and its current application. Besides, a comparative analysis was adopted to recognize the current challenges and future needs for feasible application, so as to ultimately perfect the SDAD process and extend its application scope.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cclet.2020.07.036</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-8417 |
ispartof | Chinese chemical letters, 2020-10, Vol.31 (10), p.2567-2574 |
issn | 1001-8417 1878-5964 |
language | eng |
recordid | cdi_wanfang_journals_zghxkb202010005 |
source | Elsevier ScienceDirect Journals Complete; Alma/SFX Local Collection |
subjects | Anammox Biological nitrogen removal Microbial fuel cell Mixotrophic denitrification Sulfur-driven autotrophic denitrification Sulfur-oxidizing bacteria (SOB) |
title | Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20and%20challenges%20of%20sulfur-driven%20autotrophic%20denitrification%20(SDAD)%20for%20nitrogen%20removal&rft.jtitle=Chinese%20chemical%20letters&rft.au=Wang,%20Jiao-Jiao&rft.date=2020-10-01&rft.volume=31&rft.issue=10&rft.spage=2567&rft.epage=2574&rft.pages=2567-2574&rft.issn=1001-8417&rft.eissn=1878-5964&rft_id=info:doi/10.1016/j.cclet.2020.07.036&rft_dat=%3Cwanfang_jour_cross%3Ezghxkb202010005%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zghxkb202010005&rft_els_id=S1001841720304289&rfr_iscdi=true |