Word-Representation-Based Method for Extracting Organizational Events from Online Media

Online social media exhibit massive organizational event relevant messages, and the well categorized event information can be useful in many real-world applications. In this paper, we propose a research framework to extract high quality event information from massive online media data. The main cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子科技学刊 2017-12, Vol.15 (4), p.407-412
Hauptverfasser: Jun-Qiang Zhang, Xiong-Wen Deng, Yu Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 412
container_issue 4
container_start_page 407
container_title 电子科技学刊
container_volume 15
creator Jun-Qiang Zhang
Xiong-Wen Deng
Yu Qian
description Online social media exhibit massive organizational event relevant messages, and the well categorized event information can be useful in many real-world applications. In this paper, we propose a research framework to extract high quality event information from massive online media data. The main contributions lie in two aspects: First, we present an event-extraction and event-categorization system for online media data; second, we present a novel approach for both discovering important event categories and classifying extracted events based on word representation and clustering model. Experimental results with real dataset show that the proposed framework is effective to extract high quality event information.
doi_str_mv 10.11989/JEST.1674-862X.602061
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_zgdzkj_e201704012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>7000407712</cqvip_id><wanfj_id>zgdzkj_e201704012</wanfj_id><sourcerecordid>zgdzkj_e201704012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1322-6eb42d520f925725802a113057390cd5a5a40f5079e8959532044068593913da3</originalsourceid><addsrcrecordid>eNo9z01LAzEQBuAcFCy1f0ECnjxsnSSbZHPUsn5RKWil3pZ0k92mtolm16_-eoMVTwPD877MIHRCYEyIKtT5Xfk4HxMh86wQ9HksgIIgB2jwvzpCo65zS-CECSkkHaDFIkSTPdjXaDvre9274LNL3VmD722_CgY3IeLyq4-67p1v8Sy22rvdL9QbXH6kVIebGLZ45jfO25QzTh-jw0ZvOjv6m0P0dFXOJzfZdHZ9O7mYZjVhlGbCLnNqOIVGUS4pL4BqQhhwyRTUhmuuc2g4SGULxRVnFPIcRMEVU4QZzYbobN_7qX2jfVutw3tMh3XVrjW7l3VlKRAJORCa7One1qvg27f0TfUa3VbH70oCJCNlUj_3PWAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Word-Representation-Based Method for Extracting Organizational Events from Online Media</title><source>Alma/SFX Local Collection</source><creator>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</creator><creatorcontrib>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</creatorcontrib><description>Online social media exhibit massive organizational event relevant messages, and the well categorized event information can be useful in many real-world applications. In this paper, we propose a research framework to extract high quality event information from massive online media data. The main contributions lie in two aspects: First, we present an event-extraction and event-categorization system for online media data; second, we present a novel approach for both discovering important event categories and classifying extracted events based on word representation and clustering model. Experimental results with real dataset show that the proposed framework is effective to extract high quality event information.</description><identifier>ISSN: 1674-862X</identifier><identifier>DOI: 10.11989/JEST.1674-862X.602061</identifier><language>eng</language><publisher>School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 611731, China</publisher><subject>detection;social ; Event ; media;text ; mining;word ; representation</subject><ispartof>电子科技学刊, 2017-12, Vol.15 (4), p.407-412</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87980A/87980A.jpg</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</creatorcontrib><title>Word-Representation-Based Method for Extracting Organizational Events from Online Media</title><title>电子科技学刊</title><addtitle>Journal of Electronic Science Technology</addtitle><description>Online social media exhibit massive organizational event relevant messages, and the well categorized event information can be useful in many real-world applications. In this paper, we propose a research framework to extract high quality event information from massive online media data. The main contributions lie in two aspects: First, we present an event-extraction and event-categorization system for online media data; second, we present a novel approach for both discovering important event categories and classifying extracted events based on word representation and clustering model. Experimental results with real dataset show that the proposed framework is effective to extract high quality event information.</description><subject>detection;social</subject><subject>Event</subject><subject>media;text</subject><subject>mining;word</subject><subject>representation</subject><issn>1674-862X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9z01LAzEQBuAcFCy1f0ECnjxsnSSbZHPUsn5RKWil3pZ0k92mtolm16_-eoMVTwPD877MIHRCYEyIKtT5Xfk4HxMh86wQ9HksgIIgB2jwvzpCo65zS-CECSkkHaDFIkSTPdjXaDvre9274LNL3VmD722_CgY3IeLyq4-67p1v8Sy22rvdL9QbXH6kVIebGLZ45jfO25QzTh-jw0ZvOjv6m0P0dFXOJzfZdHZ9O7mYZjVhlGbCLnNqOIVGUS4pL4BqQhhwyRTUhmuuc2g4SGULxRVnFPIcRMEVU4QZzYbobN_7qX2jfVutw3tMh3XVrjW7l3VlKRAJORCa7One1qvg27f0TfUa3VbH70oCJCNlUj_3PWAo</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</creator><general>School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 611731, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20171201</creationdate><title>Word-Representation-Based Method for Extracting Organizational Events from Online Media</title><author>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1322-6eb42d520f925725802a113057390cd5a5a40f5079e8959532044068593913da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>detection;social</topic><topic>Event</topic><topic>media;text</topic><topic>mining;word</topic><topic>representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>电子科技学刊</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Word-Representation-Based Method for Extracting Organizational Events from Online Media</atitle><jtitle>电子科技学刊</jtitle><addtitle>Journal of Electronic Science Technology</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>15</volume><issue>4</issue><spage>407</spage><epage>412</epage><pages>407-412</pages><issn>1674-862X</issn><abstract>Online social media exhibit massive organizational event relevant messages, and the well categorized event information can be useful in many real-world applications. In this paper, we propose a research framework to extract high quality event information from massive online media data. The main contributions lie in two aspects: First, we present an event-extraction and event-categorization system for online media data; second, we present a novel approach for both discovering important event categories and classifying extracted events based on word representation and clustering model. Experimental results with real dataset show that the proposed framework is effective to extract high quality event information.</abstract><pub>School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 611731, China</pub><doi>10.11989/JEST.1674-862X.602061</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-862X
ispartof 电子科技学刊, 2017-12, Vol.15 (4), p.407-412
issn 1674-862X
language eng
recordid cdi_wanfang_journals_zgdzkj_e201704012
source Alma/SFX Local Collection
subjects detection
social
Event
media
text
mining
word
representation
title Word-Representation-Based Method for Extracting Organizational Events from Online Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Word-Representation-Based%20Method%20for%20Extracting%20Organizational%20Events%20from%20Online%20Media&rft.jtitle=%E7%94%B5%E5%AD%90%E7%A7%91%E6%8A%80%E5%AD%A6%E5%88%8A&rft.au=Jun-Qiang%20Zhang;Xiong-Wen%20Deng;Yu%20Qian&rft.date=2017-12-01&rft.volume=15&rft.issue=4&rft.spage=407&rft.epage=412&rft.pages=407-412&rft.issn=1674-862X&rft_id=info:doi/10.11989/JEST.1674-862X.602061&rft_dat=%3Cwanfang_jour_chong%3Ezgdzkj_e201704012%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=7000407712&rft_wanfj_id=zgdzkj_e201704012&rfr_iscdi=true