Word-Representation-Based Method for Extracting Organizational Events from Online Media
Online social media exhibit massive organizational event relevant messages, and the well categorized event information can be useful in many real-world applications. In this paper, we propose a research framework to extract high quality event information from massive online media data. The main cont...
Gespeichert in:
Veröffentlicht in: | 电子科技学刊 2017-12, Vol.15 (4), p.407-412 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 412 |
---|---|
container_issue | 4 |
container_start_page | 407 |
container_title | 电子科技学刊 |
container_volume | 15 |
creator | Jun-Qiang Zhang Xiong-Wen Deng Yu Qian |
description | Online social media exhibit massive organizational event relevant messages, and the well categorized event information can be useful in many real-world applications. In this paper, we propose a research framework to extract high quality event information from massive online media data. The main contributions lie in two aspects: First, we present an event-extraction and event-categorization system for online media data; second, we present a novel approach for both discovering important event categories and classifying extracted events based on word representation and clustering model. Experimental results with real dataset show that the proposed framework is effective to extract high quality event information. |
doi_str_mv | 10.11989/JEST.1674-862X.602061 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_zgdzkj_e201704012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>7000407712</cqvip_id><wanfj_id>zgdzkj_e201704012</wanfj_id><sourcerecordid>zgdzkj_e201704012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1322-6eb42d520f925725802a113057390cd5a5a40f5079e8959532044068593913da3</originalsourceid><addsrcrecordid>eNo9z01LAzEQBuAcFCy1f0ECnjxsnSSbZHPUsn5RKWil3pZ0k92mtolm16_-eoMVTwPD877MIHRCYEyIKtT5Xfk4HxMh86wQ9HksgIIgB2jwvzpCo65zS-CECSkkHaDFIkSTPdjXaDvre9274LNL3VmD722_CgY3IeLyq4-67p1v8Sy22rvdL9QbXH6kVIebGLZ45jfO25QzTh-jw0ZvOjv6m0P0dFXOJzfZdHZ9O7mYZjVhlGbCLnNqOIVGUS4pL4BqQhhwyRTUhmuuc2g4SGULxRVnFPIcRMEVU4QZzYbobN_7qX2jfVutw3tMh3XVrjW7l3VlKRAJORCa7One1qvg27f0TfUa3VbH70oCJCNlUj_3PWAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Word-Representation-Based Method for Extracting Organizational Events from Online Media</title><source>Alma/SFX Local Collection</source><creator>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</creator><creatorcontrib>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</creatorcontrib><description>Online social media exhibit massive organizational event relevant messages, and the well categorized event information can be useful in many real-world applications. In this paper, we propose a research framework to extract high quality event information from massive online media data. The main contributions lie in two aspects: First, we present an event-extraction and event-categorization system for online media data; second, we present a novel approach for both discovering important event categories and classifying extracted events based on word representation and clustering model. Experimental results with real dataset show that the proposed framework is effective to extract high quality event information.</description><identifier>ISSN: 1674-862X</identifier><identifier>DOI: 10.11989/JEST.1674-862X.602061</identifier><language>eng</language><publisher>School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 611731, China</publisher><subject>detection;social ; Event ; media;text ; mining;word ; representation</subject><ispartof>电子科技学刊, 2017-12, Vol.15 (4), p.407-412</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87980A/87980A.jpg</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</creatorcontrib><title>Word-Representation-Based Method for Extracting Organizational Events from Online Media</title><title>电子科技学刊</title><addtitle>Journal of Electronic Science Technology</addtitle><description>Online social media exhibit massive organizational event relevant messages, and the well categorized event information can be useful in many real-world applications. In this paper, we propose a research framework to extract high quality event information from massive online media data. The main contributions lie in two aspects: First, we present an event-extraction and event-categorization system for online media data; second, we present a novel approach for both discovering important event categories and classifying extracted events based on word representation and clustering model. Experimental results with real dataset show that the proposed framework is effective to extract high quality event information.</description><subject>detection;social</subject><subject>Event</subject><subject>media;text</subject><subject>mining;word</subject><subject>representation</subject><issn>1674-862X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9z01LAzEQBuAcFCy1f0ECnjxsnSSbZHPUsn5RKWil3pZ0k92mtolm16_-eoMVTwPD877MIHRCYEyIKtT5Xfk4HxMh86wQ9HksgIIgB2jwvzpCo65zS-CECSkkHaDFIkSTPdjXaDvre9274LNL3VmD722_CgY3IeLyq4-67p1v8Sy22rvdL9QbXH6kVIebGLZ45jfO25QzTh-jw0ZvOjv6m0P0dFXOJzfZdHZ9O7mYZjVhlGbCLnNqOIVGUS4pL4BqQhhwyRTUhmuuc2g4SGULxRVnFPIcRMEVU4QZzYbobN_7qX2jfVutw3tMh3XVrjW7l3VlKRAJORCa7One1qvg27f0TfUa3VbH70oCJCNlUj_3PWAo</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</creator><general>School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 611731, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20171201</creationdate><title>Word-Representation-Based Method for Extracting Organizational Events from Online Media</title><author>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1322-6eb42d520f925725802a113057390cd5a5a40f5079e8959532044068593913da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>detection;social</topic><topic>Event</topic><topic>media;text</topic><topic>mining;word</topic><topic>representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>电子科技学刊</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun-Qiang Zhang;Xiong-Wen Deng;Yu Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Word-Representation-Based Method for Extracting Organizational Events from Online Media</atitle><jtitle>电子科技学刊</jtitle><addtitle>Journal of Electronic Science Technology</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>15</volume><issue>4</issue><spage>407</spage><epage>412</epage><pages>407-412</pages><issn>1674-862X</issn><abstract>Online social media exhibit massive organizational event relevant messages, and the well categorized event information can be useful in many real-world applications. In this paper, we propose a research framework to extract high quality event information from massive online media data. The main contributions lie in two aspects: First, we present an event-extraction and event-categorization system for online media data; second, we present a novel approach for both discovering important event categories and classifying extracted events based on word representation and clustering model. Experimental results with real dataset show that the proposed framework is effective to extract high quality event information.</abstract><pub>School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 611731, China</pub><doi>10.11989/JEST.1674-862X.602061</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-862X |
ispartof | 电子科技学刊, 2017-12, Vol.15 (4), p.407-412 |
issn | 1674-862X |
language | eng |
recordid | cdi_wanfang_journals_zgdzkj_e201704012 |
source | Alma/SFX Local Collection |
subjects | detection social Event media text mining word representation |
title | Word-Representation-Based Method for Extracting Organizational Events from Online Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Word-Representation-Based%20Method%20for%20Extracting%20Organizational%20Events%20from%20Online%20Media&rft.jtitle=%E7%94%B5%E5%AD%90%E7%A7%91%E6%8A%80%E5%AD%A6%E5%88%8A&rft.au=Jun-Qiang%20Zhang;Xiong-Wen%20Deng;Yu%20Qian&rft.date=2017-12-01&rft.volume=15&rft.issue=4&rft.spage=407&rft.epage=412&rft.pages=407-412&rft.issn=1674-862X&rft_id=info:doi/10.11989/JEST.1674-862X.602061&rft_dat=%3Cwanfang_jour_chong%3Ezgdzkj_e201704012%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=7000407712&rft_wanfj_id=zgdzkj_e201704012&rfr_iscdi=true |