Retrieval of High Resolution Satellite Images Using Texture Features
In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equall...
Gespeichert in:
Veröffentlicht in: | 电子科技学刊 2014, Vol.12 (2), p.211-215 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 215 |
---|---|
container_issue | 2 |
container_start_page | 211 |
container_title | 电子科技学刊 |
container_volume | 12 |
creator | Samia Bouteldja Assia Kourgli |
description | In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval. |
doi_str_mv | 10.3969/j.issn.1674-862X.2014.02.014 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_zgdzkj_e201402013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>50260167</cqvip_id><wanfj_id>zgdzkj_e201402013</wanfj_id><sourcerecordid>zgdzkj_e201402013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603-71147846a495d78d2fe1a341c5a13ecf919d99c5380d5f8662708e5def9f78fb3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhWehYKn9DyO4cZE4j8xrKdXaQkGoFdyFaXInnZpONJP46K83peLmfnA53HvOQeiakpQbaW53qY8xpFSqLNGSvaaM0CwlLB1whkb_-ws0idFviKBcKqnYCN2voGs9fNoaNw7PfbXFK4hN3Xe-CfjZdlDXvgO82NsKIn6JPlR4Dd9d3wKegT0yXqJzZ-sIkz-O0Xr2sJ7Ok-XT42J6t0wKSXiiKM2UzqTNjCiVLpkDanlGC2Eph8IZakpjCsE1KYXTUjJFNIgSnHFKuw0fo5vT2S8bnA1Vvmv6NgwP80NVHt52ORxjk2HwQXt10hbbJlQfg-v8vfV72_7kgjBJhkr4L4bxXAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Retrieval of High Resolution Satellite Images Using Texture Features</title><source>Alma/SFX Local Collection</source><creator>Samia Bouteldja Assia Kourgli</creator><creatorcontrib>Samia Bouteldja Assia Kourgli</creatorcontrib><description>In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval.</description><identifier>ISSN: 1674-862X</identifier><identifier>DOI: 10.3969/j.issn.1674-862X.2014.02.014</identifier><language>eng</language><publisher>Laboratory of Image Processing and Radiation, University of Electronic Science and Technology of Algiers, Algiers, Algeria%the Laboratory of Image Processing and Radiation, University of Electronic Science and Technology of Algiers, Algiers, Algeria</publisher><subject>CBIR ; 二元模式 ; 卫星图像 ; 基于内容的图像检索 ; 开发利用 ; 枸杞多糖 ; 纹理特征 ; 高分辨率卫星影像</subject><ispartof>电子科技学刊, 2014, Vol.12 (2), p.211-215</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87980A/87980A.jpg</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Samia Bouteldja Assia Kourgli</creatorcontrib><title>Retrieval of High Resolution Satellite Images Using Texture Features</title><title>电子科技学刊</title><addtitle>Journal of Electronic Science Technology</addtitle><description>In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval.</description><subject>CBIR</subject><subject>二元模式</subject><subject>卫星图像</subject><subject>基于内容的图像检索</subject><subject>开发利用</subject><subject>枸杞多糖</subject><subject>纹理特征</subject><subject>高分辨率卫星影像</subject><issn>1674-862X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhWehYKn9DyO4cZE4j8xrKdXaQkGoFdyFaXInnZpONJP46K83peLmfnA53HvOQeiakpQbaW53qY8xpFSqLNGSvaaM0CwlLB1whkb_-ws0idFviKBcKqnYCN2voGs9fNoaNw7PfbXFK4hN3Xe-CfjZdlDXvgO82NsKIn6JPlR4Dd9d3wKegT0yXqJzZ-sIkz-O0Xr2sJ7Ok-XT42J6t0wKSXiiKM2UzqTNjCiVLpkDanlGC2Eph8IZakpjCsE1KYXTUjJFNIgSnHFKuw0fo5vT2S8bnA1Vvmv6NgwP80NVHt52ORxjk2HwQXt10hbbJlQfg-v8vfV72_7kgjBJhkr4L4bxXAw</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Samia Bouteldja Assia Kourgli</creator><general>Laboratory of Image Processing and Radiation, University of Electronic Science and Technology of Algiers, Algiers, Algeria%the Laboratory of Image Processing and Radiation, University of Electronic Science and Technology of Algiers, Algiers, Algeria</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2014</creationdate><title>Retrieval of High Resolution Satellite Images Using Texture Features</title><author>Samia Bouteldja Assia Kourgli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603-71147846a495d78d2fe1a341c5a13ecf919d99c5380d5f8662708e5def9f78fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CBIR</topic><topic>二元模式</topic><topic>卫星图像</topic><topic>基于内容的图像检索</topic><topic>开发利用</topic><topic>枸杞多糖</topic><topic>纹理特征</topic><topic>高分辨率卫星影像</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samia Bouteldja Assia Kourgli</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>电子科技学刊</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samia Bouteldja Assia Kourgli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrieval of High Resolution Satellite Images Using Texture Features</atitle><jtitle>电子科技学刊</jtitle><addtitle>Journal of Electronic Science Technology</addtitle><date>2014</date><risdate>2014</risdate><volume>12</volume><issue>2</issue><spage>211</spage><epage>215</epage><pages>211-215</pages><issn>1674-862X</issn><abstract>In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval.</abstract><pub>Laboratory of Image Processing and Radiation, University of Electronic Science and Technology of Algiers, Algiers, Algeria%the Laboratory of Image Processing and Radiation, University of Electronic Science and Technology of Algiers, Algiers, Algeria</pub><doi>10.3969/j.issn.1674-862X.2014.02.014</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-862X |
ispartof | 电子科技学刊, 2014, Vol.12 (2), p.211-215 |
issn | 1674-862X |
language | eng |
recordid | cdi_wanfang_journals_zgdzkj_e201402013 |
source | Alma/SFX Local Collection |
subjects | CBIR 二元模式 卫星图像 基于内容的图像检索 开发利用 枸杞多糖 纹理特征 高分辨率卫星影像 |
title | Retrieval of High Resolution Satellite Images Using Texture Features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrieval%20of%20High%20Resolution%20Satellite%20Images%20Using%20Texture%20Features&rft.jtitle=%E7%94%B5%E5%AD%90%E7%A7%91%E6%8A%80%E5%AD%A6%E5%88%8A&rft.au=Samia%20Bouteldja%20Assia%20Kourgli&rft.date=2014&rft.volume=12&rft.issue=2&rft.spage=211&rft.epage=215&rft.pages=211-215&rft.issn=1674-862X&rft_id=info:doi/10.3969/j.issn.1674-862X.2014.02.014&rft_dat=%3Cwanfang_jour_chong%3Ezgdzkj_e201402013%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=50260167&rft_wanfj_id=zgdzkj_e201402013&rfr_iscdi=true |