Multiscale Product for Edge Detection

Many methods have been proposed to extract the most relevant areas of an image. This article explores the method of edge detection by the multiscale product (MP) of the wavelet transform. The wavelet used in this work is the first derivative of a bidimensional Gaussian function. InitiaRy, we constru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子科技学刊 2014, Vol.12 (1), p.112-115
1. Verfasser: Nadia Ben Youssef Aicha Bouzid Noureddine Ellouze
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue 1
container_start_page 112
container_title 电子科技学刊
container_volume 12
creator Nadia Ben Youssef Aicha Bouzid Noureddine Ellouze
description Many methods have been proposed to extract the most relevant areas of an image. This article explores the method of edge detection by the multiscale product (MP) of the wavelet transform. The wavelet used in this work is the first derivative of a bidimensional Gaussian function. InitiaRy, we construct the wavelet, then we present the MP approach which is applied to binary and grey levels images. This method is compared with other methods without noise and in the presence of noise. The experiment results show fhht the MP method for edge detection outPerforms conventional methods even in noisy environments.
doi_str_mv 10.3969/j.issn.1674-862X.2014.01.022
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_zgdzkj_e201401022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>49129061</cqvip_id><wanfj_id>zgdzkj_e201401022</wanfj_id><sourcerecordid>zgdzkj_e201401022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602-62dfd2142ee5a4d916b895ba07c30f87fc835a0f64e5cd93cc62c8659753acde3</originalsourceid><addsrcrecordid>eNo9j0tLxDAYRbNQcBjnP1TQhYvGPL80SxnHB4zoYhbuSppHTa2tNi3i_HorI64uXA73chA6pwRzDfqqwTGlDlNQIi-AvWBGqMCEYsLYEVr89ydolVKsiKQcFCi2QBePUzvGZE3rs-ehd5Mds9AP2cbVPrvxo7dj7LtTdBxMm_zqL5dod7vZre_z7dPdw_p6m1sgLAfmgmNUMO-lEU5TqAotK0OU5SQUKtiCS0MCCC-t09xaYLYAqZXkxjrPl-jyMPtlumC6umz6aejmw3Jfu_1bU_pfL0Jnq5k9O7D2te_qzzjTH0N8N8N3KTRlmgDlP1h_UPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiscale Product for Edge Detection</title><source>Alma/SFX Local Collection</source><creator>Nadia Ben Youssef Aicha Bouzid Noureddine Ellouze</creator><creatorcontrib>Nadia Ben Youssef Aicha Bouzid Noureddine Ellouze</creatorcontrib><description>Many methods have been proposed to extract the most relevant areas of an image. This article explores the method of edge detection by the multiscale product (MP) of the wavelet transform. The wavelet used in this work is the first derivative of a bidimensional Gaussian function. InitiaRy, we construct the wavelet, then we present the MP approach which is applied to binary and grey levels images. This method is compared with other methods without noise and in the presence of noise. The experiment results show fhht the MP method for edge detection outPerforms conventional methods even in noisy environments.</description><identifier>ISSN: 1674-862X</identifier><identifier>DOI: 10.3969/j.issn.1674-862X.2014.01.022</identifier><language>eng</language><publisher>the Signal, Image, and Information Technology Laboratory, Department of Electrical Engineering, National Engineering School of Tunis, Tunis, Tunisia%the Department of Electrical Engineering, National Engineering School of Tunis, Tunis, Tunisia</publisher><subject>一阶导数 ; 产品 ; 传统方法 ; 多尺度边缘检测 ; 小波 ; 灰度级 ; 高斯函数</subject><ispartof>电子科技学刊, 2014, Vol.12 (1), p.112-115</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87980A/87980A.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Nadia Ben Youssef Aicha Bouzid Noureddine Ellouze</creatorcontrib><title>Multiscale Product for Edge Detection</title><title>电子科技学刊</title><addtitle>Journal of Electronic Science Technology</addtitle><description>Many methods have been proposed to extract the most relevant areas of an image. This article explores the method of edge detection by the multiscale product (MP) of the wavelet transform. The wavelet used in this work is the first derivative of a bidimensional Gaussian function. InitiaRy, we construct the wavelet, then we present the MP approach which is applied to binary and grey levels images. This method is compared with other methods without noise and in the presence of noise. The experiment results show fhht the MP method for edge detection outPerforms conventional methods even in noisy environments.</description><subject>一阶导数</subject><subject>产品</subject><subject>传统方法</subject><subject>多尺度边缘检测</subject><subject>小波</subject><subject>灰度级</subject><subject>高斯函数</subject><issn>1674-862X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLxDAYRbNQcBjnP1TQhYvGPL80SxnHB4zoYhbuSppHTa2tNi3i_HorI64uXA73chA6pwRzDfqqwTGlDlNQIi-AvWBGqMCEYsLYEVr89ydolVKsiKQcFCi2QBePUzvGZE3rs-ehd5Mds9AP2cbVPrvxo7dj7LtTdBxMm_zqL5dod7vZre_z7dPdw_p6m1sgLAfmgmNUMO-lEU5TqAotK0OU5SQUKtiCS0MCCC-t09xaYLYAqZXkxjrPl-jyMPtlumC6umz6aejmw3Jfu_1bU_pfL0Jnq5k9O7D2te_qzzjTH0N8N8N3KTRlmgDlP1h_UPY</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Nadia Ben Youssef Aicha Bouzid Noureddine Ellouze</creator><general>the Signal, Image, and Information Technology Laboratory, Department of Electrical Engineering, National Engineering School of Tunis, Tunis, Tunisia%the Department of Electrical Engineering, National Engineering School of Tunis, Tunis, Tunisia</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2014</creationdate><title>Multiscale Product for Edge Detection</title><author>Nadia Ben Youssef Aicha Bouzid Noureddine Ellouze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602-62dfd2142ee5a4d916b895ba07c30f87fc835a0f64e5cd93cc62c8659753acde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>一阶导数</topic><topic>产品</topic><topic>传统方法</topic><topic>多尺度边缘检测</topic><topic>小波</topic><topic>灰度级</topic><topic>高斯函数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadia Ben Youssef Aicha Bouzid Noureddine Ellouze</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>电子科技学刊</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadia Ben Youssef Aicha Bouzid Noureddine Ellouze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Product for Edge Detection</atitle><jtitle>电子科技学刊</jtitle><addtitle>Journal of Electronic Science Technology</addtitle><date>2014</date><risdate>2014</risdate><volume>12</volume><issue>1</issue><spage>112</spage><epage>115</epage><pages>112-115</pages><issn>1674-862X</issn><abstract>Many methods have been proposed to extract the most relevant areas of an image. This article explores the method of edge detection by the multiscale product (MP) of the wavelet transform. The wavelet used in this work is the first derivative of a bidimensional Gaussian function. InitiaRy, we construct the wavelet, then we present the MP approach which is applied to binary and grey levels images. This method is compared with other methods without noise and in the presence of noise. The experiment results show fhht the MP method for edge detection outPerforms conventional methods even in noisy environments.</abstract><pub>the Signal, Image, and Information Technology Laboratory, Department of Electrical Engineering, National Engineering School of Tunis, Tunis, Tunisia%the Department of Electrical Engineering, National Engineering School of Tunis, Tunis, Tunisia</pub><doi>10.3969/j.issn.1674-862X.2014.01.022</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-862X
ispartof 电子科技学刊, 2014, Vol.12 (1), p.112-115
issn 1674-862X
language eng
recordid cdi_wanfang_journals_zgdzkj_e201401022
source Alma/SFX Local Collection
subjects 一阶导数
产品
传统方法
多尺度边缘检测
小波
灰度级
高斯函数
title Multiscale Product for Edge Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Product%20for%20Edge%20Detection&rft.jtitle=%E7%94%B5%E5%AD%90%E7%A7%91%E6%8A%80%E5%AD%A6%E5%88%8A&rft.au=Nadia%20Ben%20Youssef%20Aicha%20Bouzid%20Noureddine%20Ellouze&rft.date=2014&rft.volume=12&rft.issue=1&rft.spage=112&rft.epage=115&rft.pages=112-115&rft.issn=1674-862X&rft_id=info:doi/10.3969/j.issn.1674-862X.2014.01.022&rft_dat=%3Cwanfang_jour_chong%3Ezgdzkj_e201401022%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=49129061&rft_wanfj_id=zgdzkj_e201401022&rfr_iscdi=true