Performance of Object Classification Using Zernike Moment

Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is the Zernike moment. In this paper, the performance of object classification using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子科技学刊 2014, Vol.12 (1), p.90-94
1. Verfasser: Ariffuddin Joret Mohammad Faiz Liew Abdullah Muhammad Suhaimi Sulong Asmarashid Ponniran Siti Zuraidah Zainudin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue 1
container_start_page 90
container_title 电子科技学刊
container_volume 12
creator Ariffuddin Joret Mohammad Faiz Liew Abdullah Muhammad Suhaimi Sulong Asmarashid Ponniran Siti Zuraidah Zainudin
description Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is the Zernike moment. In this paper, the performance of object classification using the Zernike moment has been explored. The classifier based on neural networks has been used in this study. The results indicate the best performance in identifying the aggregate is at 91.4% with a ten orders of the Zernike moment. This encouraging result has shown that the Zernike moment is a suitable moment to be used as a feature of object classification systems.
doi_str_mv 10.3969/j.issn.1674-862X.2014.01.018
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_zgdzkj_e201401018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>49129057</cqvip_id><wanfj_id>zgdzkj_e201401018</wanfj_id><sourcerecordid>zgdzkj_e201401018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608-f99396ff98ddda762969ec9fdb2340e7382e0242190efc48863b3112908786633</originalsourceid><addsrcrecordid>eNo9j8tKAzEUhrNQsNS-QwQ3LmbMZZrLUgZvUKmLCuJmyGSSMdNOosmI2Kc3pSIcOHD4-M_3A3CJUUklk9dD6VLyJWa8KgQjryVBuCoRziNOwOz_fgYWKbkWLTFlnHEyA_LZRBviqLw2MFi4bgejJ1jvVAat02pywcOX5HwP30z0bmvgUxiNn87BqVW7ZBZ_ew42d7eb-qFYre8f65tVoRkShZUyG1orRdd1ijOSdY2WtmsJrZDhVBCDSEWwRMbqSghGW4oxkUhwwRilc3B1jP1W3irfN0P4ij4_bPZ9t98OjTl0RTg3zezFkdXvwfef2bn5iG5U8aep5CFzyekv3mlXSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance of Object Classification Using Zernike Moment</title><source>Alma/SFX Local Collection</source><creator>Ariffuddin Joret Mohammad Faiz Liew Abdullah Muhammad Suhaimi Sulong Asmarashid Ponniran Siti Zuraidah Zainudin</creator><creatorcontrib>Ariffuddin Joret Mohammad Faiz Liew Abdullah Muhammad Suhaimi Sulong Asmarashid Ponniran Siti Zuraidah Zainudin</creatorcontrib><description>Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is the Zernike moment. In this paper, the performance of object classification using the Zernike moment has been explored. The classifier based on neural networks has been used in this study. The results indicate the best performance in identifying the aggregate is at 91.4% with a ten orders of the Zernike moment. This encouraging result has shown that the Zernike moment is a suitable moment to be used as a feature of object classification systems.</description><identifier>ISSN: 1674-862X</identifier><identifier>DOI: 10.3969/j.issn.1674-862X.2014.01.018</identifier><language>eng</language><publisher>the Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein 0nn Malaysia, 86400 Parit Raja, Johor, Malaysia</publisher><subject>Zernike矩 ; 分类系统 ; 图像目标 ; 对象分类 ; 最佳性能 ; 目标分类 ; 研究人员 ; 神经网络</subject><ispartof>电子科技学刊, 2014, Vol.12 (1), p.90-94</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87980A/87980A.jpg</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Ariffuddin Joret Mohammad Faiz Liew Abdullah Muhammad Suhaimi Sulong Asmarashid Ponniran Siti Zuraidah Zainudin</creatorcontrib><title>Performance of Object Classification Using Zernike Moment</title><title>电子科技学刊</title><addtitle>Journal of Electronic Science Technology</addtitle><description>Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is the Zernike moment. In this paper, the performance of object classification using the Zernike moment has been explored. The classifier based on neural networks has been used in this study. The results indicate the best performance in identifying the aggregate is at 91.4% with a ten orders of the Zernike moment. This encouraging result has shown that the Zernike moment is a suitable moment to be used as a feature of object classification systems.</description><subject>Zernike矩</subject><subject>分类系统</subject><subject>图像目标</subject><subject>对象分类</subject><subject>最佳性能</subject><subject>目标分类</subject><subject>研究人员</subject><subject>神经网络</subject><issn>1674-862X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9j8tKAzEUhrNQsNS-QwQ3LmbMZZrLUgZvUKmLCuJmyGSSMdNOosmI2Kc3pSIcOHD4-M_3A3CJUUklk9dD6VLyJWa8KgQjryVBuCoRziNOwOz_fgYWKbkWLTFlnHEyA_LZRBviqLw2MFi4bgejJ1jvVAat02pywcOX5HwP30z0bmvgUxiNn87BqVW7ZBZ_ew42d7eb-qFYre8f65tVoRkShZUyG1orRdd1ijOSdY2WtmsJrZDhVBCDSEWwRMbqSghGW4oxkUhwwRilc3B1jP1W3irfN0P4ij4_bPZ9t98OjTl0RTg3zezFkdXvwfef2bn5iG5U8aep5CFzyekv3mlXSA</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Ariffuddin Joret Mohammad Faiz Liew Abdullah Muhammad Suhaimi Sulong Asmarashid Ponniran Siti Zuraidah Zainudin</creator><general>the Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein 0nn Malaysia, 86400 Parit Raja, Johor, Malaysia</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2014</creationdate><title>Performance of Object Classification Using Zernike Moment</title><author>Ariffuddin Joret Mohammad Faiz Liew Abdullah Muhammad Suhaimi Sulong Asmarashid Ponniran Siti Zuraidah Zainudin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608-f99396ff98ddda762969ec9fdb2340e7382e0242190efc48863b3112908786633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Zernike矩</topic><topic>分类系统</topic><topic>图像目标</topic><topic>对象分类</topic><topic>最佳性能</topic><topic>目标分类</topic><topic>研究人员</topic><topic>神经网络</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ariffuddin Joret Mohammad Faiz Liew Abdullah Muhammad Suhaimi Sulong Asmarashid Ponniran Siti Zuraidah Zainudin</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>电子科技学刊</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ariffuddin Joret Mohammad Faiz Liew Abdullah Muhammad Suhaimi Sulong Asmarashid Ponniran Siti Zuraidah Zainudin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of Object Classification Using Zernike Moment</atitle><jtitle>电子科技学刊</jtitle><addtitle>Journal of Electronic Science Technology</addtitle><date>2014</date><risdate>2014</risdate><volume>12</volume><issue>1</issue><spage>90</spage><epage>94</epage><pages>90-94</pages><issn>1674-862X</issn><abstract>Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is the Zernike moment. In this paper, the performance of object classification using the Zernike moment has been explored. The classifier based on neural networks has been used in this study. The results indicate the best performance in identifying the aggregate is at 91.4% with a ten orders of the Zernike moment. This encouraging result has shown that the Zernike moment is a suitable moment to be used as a feature of object classification systems.</abstract><pub>the Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein 0nn Malaysia, 86400 Parit Raja, Johor, Malaysia</pub><doi>10.3969/j.issn.1674-862X.2014.01.018</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-862X
ispartof 电子科技学刊, 2014, Vol.12 (1), p.90-94
issn 1674-862X
language eng
recordid cdi_wanfang_journals_zgdzkj_e201401018
source Alma/SFX Local Collection
subjects Zernike矩
分类系统
图像目标
对象分类
最佳性能
目标分类
研究人员
神经网络
title Performance of Object Classification Using Zernike Moment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20Object%20Classification%20Using%20Zernike%20Moment&rft.jtitle=%E7%94%B5%E5%AD%90%E7%A7%91%E6%8A%80%E5%AD%A6%E5%88%8A&rft.au=Ariffuddin%20Joret%20Mohammad%20Faiz%20Liew%20Abdullah%20Muhammad%20Suhaimi%20Sulong%20Asmarashid%20Ponniran%20Siti%20Zuraidah%20Zainudin&rft.date=2014&rft.volume=12&rft.issue=1&rft.spage=90&rft.epage=94&rft.pages=90-94&rft.issn=1674-862X&rft_id=info:doi/10.3969/j.issn.1674-862X.2014.01.018&rft_dat=%3Cwanfang_jour_chong%3Ezgdzkj_e201401018%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=49129057&rft_wanfj_id=zgdzkj_e201401018&rfr_iscdi=true