DOA and Power Estimation Using Genetic Algorithm and Fuzzy Discrete Particle Swarm Optimization

Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a genetic algorithm (GA) and fuzzy discrete particle swarm optimization (FDPSO) are applie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子科技学刊 2014, Vol.12 (1), p.71-75
1. Verfasser: Jia-Zhou Liu Zhi-Qin Zhao Zi-Yuan He Qing-Huo Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 71
container_title 电子科技学刊
container_volume 12
creator Jia-Zhou Liu Zhi-Qin Zhao Zi-Yuan He Qing-Huo Liu
description Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a genetic algorithm (GA) and fuzzy discrete particle swarm optimization (FDPSO) are applied to optimize the direction of arrival and power parameters of the mode simultaneously. Firstly, the GA algorithm is applied to make the solution fall into the global searching. Secondly, the FDPSO method is utilized to narrow down the search field. In FDPSO, a chaotic factor and a crossover method are added to speed up the convergence. This approach has been demonstrated through some computational simulations. It is shown that the proposed algorithm can estimate both the DOA and the powers accurately. It is more efficient than some present methods, such as the Newton-like algorithm, Akaike information critical (AIC), particle swarm optimization (PSO), and genetic algorithm with particle swarm optimization (GA-PSO).
doi_str_mv 10.3969/j.issn.1674-862X.2014.01.014
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_zgdzkj_e201401014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>49129053</cqvip_id><wanfj_id>zgdzkj_e201401014</wanfj_id><sourcerecordid>zgdzkj_e201401014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604-4ead60b18905a6bcd916c13c396d2208a9a57f4c18ac2b154d868a34316161a13</originalsourceid><addsrcrecordid>eNo9kE1rwzAMhn3YYKXrf_Bglx2S-StOciz9HBRaWAe7BcVxU3et09kppfn189oxJCQQD6_0CqFnSmKey_x1FxvvbUxlKqJMss-YESpiQkOKO9T7nz-ggfemJAnlMpUp66FivBxisBVeNWft8MS35gCtaSz-8MbWeKatbo3Cw33dONNuD1d4euq6Cx4br5xuNV6BC8xe4_czuANeHoOI6a4yj-h-A3uvB3-9j9bTyXo0jxbL2dtouIiUJCISGipJSprlJAFZqiqnUlGugrmKMZJBDkm6EYpmoFhJE1FlMgMuOJUhgPI-ernJnsFuwNbFrjk5GxYWXV11X7tC_36E0FAC-3Rj1bax9XdwWRxdcO0uhcgpCydw_gPkaWVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DOA and Power Estimation Using Genetic Algorithm and Fuzzy Discrete Particle Swarm Optimization</title><source>Alma/SFX Local Collection</source><creator>Jia-Zhou Liu Zhi-Qin Zhao Zi-Yuan He Qing-Huo Liu</creator><creatorcontrib>Jia-Zhou Liu Zhi-Qin Zhao Zi-Yuan He Qing-Huo Liu</creatorcontrib><description>Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a genetic algorithm (GA) and fuzzy discrete particle swarm optimization (FDPSO) are applied to optimize the direction of arrival and power parameters of the mode simultaneously. Firstly, the GA algorithm is applied to make the solution fall into the global searching. Secondly, the FDPSO method is utilized to narrow down the search field. In FDPSO, a chaotic factor and a crossover method are added to speed up the convergence. This approach has been demonstrated through some computational simulations. It is shown that the proposed algorithm can estimate both the DOA and the powers accurately. It is more efficient than some present methods, such as the Newton-like algorithm, Akaike information critical (AIC), particle swarm optimization (PSO), and genetic algorithm with particle swarm optimization (GA-PSO).</description><identifier>ISSN: 1674-862X</identifier><identifier>DOI: 10.3969/j.issn.1674-862X.2014.01.014</identifier><language>eng</language><publisher>the School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China%the Department of Electrical and Computer Engineering, Duke University, Durham NC 27708, USA</publisher><subject>DOA ; 估算 ; 全局搜索 ; 功耗 ; 模糊 ; 离散粒子群优化 ; 粒子群优化算法 ; 遗传算法</subject><ispartof>电子科技学刊, 2014, Vol.12 (1), p.71-75</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87980A/87980A.jpg</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Jia-Zhou Liu Zhi-Qin Zhao Zi-Yuan He Qing-Huo Liu</creatorcontrib><title>DOA and Power Estimation Using Genetic Algorithm and Fuzzy Discrete Particle Swarm Optimization</title><title>电子科技学刊</title><addtitle>Journal of Electronic Science Technology</addtitle><description>Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a genetic algorithm (GA) and fuzzy discrete particle swarm optimization (FDPSO) are applied to optimize the direction of arrival and power parameters of the mode simultaneously. Firstly, the GA algorithm is applied to make the solution fall into the global searching. Secondly, the FDPSO method is utilized to narrow down the search field. In FDPSO, a chaotic factor and a crossover method are added to speed up the convergence. This approach has been demonstrated through some computational simulations. It is shown that the proposed algorithm can estimate both the DOA and the powers accurately. It is more efficient than some present methods, such as the Newton-like algorithm, Akaike information critical (AIC), particle swarm optimization (PSO), and genetic algorithm with particle swarm optimization (GA-PSO).</description><subject>DOA</subject><subject>估算</subject><subject>全局搜索</subject><subject>功耗</subject><subject>模糊</subject><subject>离散粒子群优化</subject><subject>粒子群优化算法</subject><subject>遗传算法</subject><issn>1674-862X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rwzAMhn3YYKXrf_Bglx2S-StOciz9HBRaWAe7BcVxU3et09kppfn189oxJCQQD6_0CqFnSmKey_x1FxvvbUxlKqJMss-YESpiQkOKO9T7nz-ggfemJAnlMpUp66FivBxisBVeNWft8MS35gCtaSz-8MbWeKatbo3Cw33dONNuD1d4euq6Cx4br5xuNV6BC8xe4_czuANeHoOI6a4yj-h-A3uvB3-9j9bTyXo0jxbL2dtouIiUJCISGipJSprlJAFZqiqnUlGugrmKMZJBDkm6EYpmoFhJE1FlMgMuOJUhgPI-ernJnsFuwNbFrjk5GxYWXV11X7tC_36E0FAC-3Rj1bax9XdwWRxdcO0uhcgpCydw_gPkaWVA</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Jia-Zhou Liu Zhi-Qin Zhao Zi-Yuan He Qing-Huo Liu</creator><general>the School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China%the Department of Electrical and Computer Engineering, Duke University, Durham NC 27708, USA</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2014</creationdate><title>DOA and Power Estimation Using Genetic Algorithm and Fuzzy Discrete Particle Swarm Optimization</title><author>Jia-Zhou Liu Zhi-Qin Zhao Zi-Yuan He Qing-Huo Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604-4ead60b18905a6bcd916c13c396d2208a9a57f4c18ac2b154d868a34316161a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>DOA</topic><topic>估算</topic><topic>全局搜索</topic><topic>功耗</topic><topic>模糊</topic><topic>离散粒子群优化</topic><topic>粒子群优化算法</topic><topic>遗传算法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia-Zhou Liu Zhi-Qin Zhao Zi-Yuan He Qing-Huo Liu</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>电子科技学刊</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia-Zhou Liu Zhi-Qin Zhao Zi-Yuan He Qing-Huo Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DOA and Power Estimation Using Genetic Algorithm and Fuzzy Discrete Particle Swarm Optimization</atitle><jtitle>电子科技学刊</jtitle><addtitle>Journal of Electronic Science Technology</addtitle><date>2014</date><risdate>2014</risdate><volume>12</volume><issue>1</issue><spage>71</spage><epage>75</epage><pages>71-75</pages><issn>1674-862X</issn><abstract>Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a genetic algorithm (GA) and fuzzy discrete particle swarm optimization (FDPSO) are applied to optimize the direction of arrival and power parameters of the mode simultaneously. Firstly, the GA algorithm is applied to make the solution fall into the global searching. Secondly, the FDPSO method is utilized to narrow down the search field. In FDPSO, a chaotic factor and a crossover method are added to speed up the convergence. This approach has been demonstrated through some computational simulations. It is shown that the proposed algorithm can estimate both the DOA and the powers accurately. It is more efficient than some present methods, such as the Newton-like algorithm, Akaike information critical (AIC), particle swarm optimization (PSO), and genetic algorithm with particle swarm optimization (GA-PSO).</abstract><pub>the School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China%the Department of Electrical and Computer Engineering, Duke University, Durham NC 27708, USA</pub><doi>10.3969/j.issn.1674-862X.2014.01.014</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-862X
ispartof 电子科技学刊, 2014, Vol.12 (1), p.71-75
issn 1674-862X
language eng
recordid cdi_wanfang_journals_zgdzkj_e201401014
source Alma/SFX Local Collection
subjects DOA
估算
全局搜索
功耗
模糊
离散粒子群优化
粒子群优化算法
遗传算法
title DOA and Power Estimation Using Genetic Algorithm and Fuzzy Discrete Particle Swarm Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DOA%20and%20Power%20Estimation%20Using%20Genetic%20Algorithm%20and%20Fuzzy%20Discrete%20Particle%20Swarm%20Optimization&rft.jtitle=%E7%94%B5%E5%AD%90%E7%A7%91%E6%8A%80%E5%AD%A6%E5%88%8A&rft.au=Jia-Zhou%20Liu%20Zhi-Qin%20Zhao%20Zi-Yuan%20He%20Qing-Huo%20Liu&rft.date=2014&rft.volume=12&rft.issue=1&rft.spage=71&rft.epage=75&rft.pages=71-75&rft.issn=1674-862X&rft_id=info:doi/10.3969/j.issn.1674-862X.2014.01.014&rft_dat=%3Cwanfang_jour_chong%3Ezgdzkj_e201401014%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=49129053&rft_wanfj_id=zgdzkj_e201401014&rfr_iscdi=true