Fractionation mechanism of iron isotopes in highly fractionated granites from the Xinxian Pluton, Western Dabie Orogen, Central China

Iron isotopes are important for tracing the magmatic process. The fractionation of iron isotopes in granite is up to 0.55 ‰. In this study, Wangjiagou (XWJ) granite and Tayueping (XTY) granite in the Xinxian pluton of the Western Dabie orogen were evaluated. Both the XTY and XWJ granite belong to mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geochimica 2022-12, Vol.41 (6), p.911-925
Hauptverfasser: Deng, Chenglai, Hu, Changqing, Wen, Qiuyu, Yang, Wenbin, Li, Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 925
container_issue 6
container_start_page 911
container_title Acta geochimica
container_volume 41
creator Deng, Chenglai
Hu, Changqing
Wen, Qiuyu
Yang, Wenbin
Li, Wu
description Iron isotopes are important for tracing the magmatic process. The fractionation of iron isotopes in granite is up to 0.55 ‰. In this study, Wangjiagou (XWJ) granite and Tayueping (XTY) granite in the Xinxian pluton of the Western Dabie orogen were evaluated. Both the XTY and XWJ granite belong to monzogranites, with high SiO 2 (74.42–76.82 wt.%) contents. The granites are depleted of Nb and Ti but enriched with Pb and K, and they display negative Eu anomalies (Eu/Eu* = 0.40–0.52) on REE plots that are normalized by chondrite. The δ 56 Fe values of the XTY granites vary from 0.19 ± 0.03 ‰ to 0.27 ± 0.04‰, and the δ 56 Fe values of the XWJ granites are 0.34 ± 0.02 ‰ and 0.36 ± 0.01 ‰, respectively. Both the XTY and the XWJ granites belong to highly fractionated granites due to their SI (solidification index), DI (differentiation index), and content of CaO. Evidence from the iron isotopes shows that neither fluid exsolution, alteration, weathering, nor partial melting can explain the enrichment of the heavy iron isotopes. The results modeled using the Rayleigh equation showed that fractional crystallization can produce Δ 56 Fe melt-crystal with the value of 0.08–0.15 ‰. In conclusion, fractional crystallization was the main factor controlling the fractionation of iron isotopes, and the change of melt composition may also lead to the enrichment of heavy iron isotopes in the residual melt.
doi_str_mv 10.1007/s11631-022-00567-6
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zgdqhx_e202206001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgdqhx_e202206001</wanfj_id><sourcerecordid>zgdqhx_e202206001</sourcerecordid><originalsourceid>FETCH-LOGICAL-a257t-39238be4e081a14461c1dc2044ae94edd3b2947dcf67998ccf9e236f8f361a4b3</originalsourceid><addsrcrecordid>eNp9kc1KxDAUhYsoKKMv4CrgSrCav6bNUkZHBUEXiu5Cpr1pI51kTDo4uve9jVacnZsk3HznhJyTZYcEnxKMy7NIiGAkx5TmGBeizMVWtkeZKPKSS7mdzliKHMtC7GYHMb5gjEklBOfVXvY5C7oerHf6e0ELqDvtbFwgb5ANaWKjH_wSIrIOdbbt-ndk_iTQoDYkfkj3JvgFGjpAz9atrXbovl8N3p2gJ4gDBIcu9NwCugu-hTSdghuC7tG0s07vZztG9xEOfvdJ9ji7fJhe57d3VzfT89tc06IcciYpq-bAAVdEE84FqUlTU8y5BsmhadicSl42tRGllFVdGwkpB1MZJojmczbJjkffN-2Mdq168avg0ovqo21eu7UCmlLEIgWU2KORXQb_ukp_2MC0ZKQUTFYyUXSk6uBjDGDUMtiFDu-KYPXdjhrbUclX_bSjRBKxURQT7FoIG-t_VF8bGJNf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731763989</pqid></control><display><type>article</type><title>Fractionation mechanism of iron isotopes in highly fractionated granites from the Xinxian Pluton, Western Dabie Orogen, Central China</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Deng, Chenglai ; Hu, Changqing ; Wen, Qiuyu ; Yang, Wenbin ; Li, Wu</creator><creatorcontrib>Deng, Chenglai ; Hu, Changqing ; Wen, Qiuyu ; Yang, Wenbin ; Li, Wu</creatorcontrib><description>Iron isotopes are important for tracing the magmatic process. The fractionation of iron isotopes in granite is up to 0.55 ‰. In this study, Wangjiagou (XWJ) granite and Tayueping (XTY) granite in the Xinxian pluton of the Western Dabie orogen were evaluated. Both the XTY and XWJ granite belong to monzogranites, with high SiO 2 (74.42–76.82 wt.%) contents. The granites are depleted of Nb and Ti but enriched with Pb and K, and they display negative Eu anomalies (Eu/Eu* = 0.40–0.52) on REE plots that are normalized by chondrite. The δ 56 Fe values of the XTY granites vary from 0.19 ± 0.03 ‰ to 0.27 ± 0.04‰, and the δ 56 Fe values of the XWJ granites are 0.34 ± 0.02 ‰ and 0.36 ± 0.01 ‰, respectively. Both the XTY and the XWJ granites belong to highly fractionated granites due to their SI (solidification index), DI (differentiation index), and content of CaO. Evidence from the iron isotopes shows that neither fluid exsolution, alteration, weathering, nor partial melting can explain the enrichment of the heavy iron isotopes. The results modeled using the Rayleigh equation showed that fractional crystallization can produce Δ 56 Fe melt-crystal with the value of 0.08–0.15 ‰. In conclusion, fractional crystallization was the main factor controlling the fractionation of iron isotopes, and the change of melt composition may also lead to the enrichment of heavy iron isotopes in the residual melt.</description><identifier>ISSN: 2096-0956</identifier><identifier>EISSN: 2365-7499</identifier><identifier>DOI: 10.1007/s11631-022-00567-6</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Anomalies ; Crystallization ; Earth and Environmental Science ; Earth Sciences ; Enrichment ; Fractional crystallization ; Fractionation ; Geochemistry ; Granite ; Iron ; Iron isotopes ; Isotopes ; Original Article ; Orogeny ; Plutons ; Rayleigh equations ; Silica ; Silicon dioxide ; Solidification</subject><ispartof>Acta geochimica, 2022-12, Vol.41 (6), p.911-925</ispartof><rights>The Author(s), under exclusive licence to Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a257t-39238be4e081a14461c1dc2044ae94edd3b2947dcf67998ccf9e236f8f361a4b3</cites><orcidid>0000-0002-9330-6169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgdqhx-e/zgdqhx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11631-022-00567-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11631-022-00567-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Deng, Chenglai</creatorcontrib><creatorcontrib>Hu, Changqing</creatorcontrib><creatorcontrib>Wen, Qiuyu</creatorcontrib><creatorcontrib>Yang, Wenbin</creatorcontrib><creatorcontrib>Li, Wu</creatorcontrib><title>Fractionation mechanism of iron isotopes in highly fractionated granites from the Xinxian Pluton, Western Dabie Orogen, Central China</title><title>Acta geochimica</title><addtitle>Acta Geochim</addtitle><description>Iron isotopes are important for tracing the magmatic process. The fractionation of iron isotopes in granite is up to 0.55 ‰. In this study, Wangjiagou (XWJ) granite and Tayueping (XTY) granite in the Xinxian pluton of the Western Dabie orogen were evaluated. Both the XTY and XWJ granite belong to monzogranites, with high SiO 2 (74.42–76.82 wt.%) contents. The granites are depleted of Nb and Ti but enriched with Pb and K, and they display negative Eu anomalies (Eu/Eu* = 0.40–0.52) on REE plots that are normalized by chondrite. The δ 56 Fe values of the XTY granites vary from 0.19 ± 0.03 ‰ to 0.27 ± 0.04‰, and the δ 56 Fe values of the XWJ granites are 0.34 ± 0.02 ‰ and 0.36 ± 0.01 ‰, respectively. Both the XTY and the XWJ granites belong to highly fractionated granites due to their SI (solidification index), DI (differentiation index), and content of CaO. Evidence from the iron isotopes shows that neither fluid exsolution, alteration, weathering, nor partial melting can explain the enrichment of the heavy iron isotopes. The results modeled using the Rayleigh equation showed that fractional crystallization can produce Δ 56 Fe melt-crystal with the value of 0.08–0.15 ‰. In conclusion, fractional crystallization was the main factor controlling the fractionation of iron isotopes, and the change of melt composition may also lead to the enrichment of heavy iron isotopes in the residual melt.</description><subject>Anomalies</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Enrichment</subject><subject>Fractional crystallization</subject><subject>Fractionation</subject><subject>Geochemistry</subject><subject>Granite</subject><subject>Iron</subject><subject>Iron isotopes</subject><subject>Isotopes</subject><subject>Original Article</subject><subject>Orogeny</subject><subject>Plutons</subject><subject>Rayleigh equations</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Solidification</subject><issn>2096-0956</issn><issn>2365-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KxDAUhYsoKKMv4CrgSrCav6bNUkZHBUEXiu5Cpr1pI51kTDo4uve9jVacnZsk3HznhJyTZYcEnxKMy7NIiGAkx5TmGBeizMVWtkeZKPKSS7mdzliKHMtC7GYHMb5gjEklBOfVXvY5C7oerHf6e0ELqDvtbFwgb5ANaWKjH_wSIrIOdbbt-ndk_iTQoDYkfkj3JvgFGjpAz9atrXbovl8N3p2gJ4gDBIcu9NwCugu-hTSdghuC7tG0s07vZztG9xEOfvdJ9ji7fJhe57d3VzfT89tc06IcciYpq-bAAVdEE84FqUlTU8y5BsmhadicSl42tRGllFVdGwkpB1MZJojmczbJjkffN-2Mdq168avg0ovqo21eu7UCmlLEIgWU2KORXQb_ukp_2MC0ZKQUTFYyUXSk6uBjDGDUMtiFDu-KYPXdjhrbUclX_bSjRBKxURQT7FoIG-t_VF8bGJNf</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Deng, Chenglai</creator><creator>Hu, Changqing</creator><creator>Wen, Qiuyu</creator><creator>Yang, Wenbin</creator><creator>Li, Wu</creator><general>Science Press</general><general>Springer Nature B.V</general><general>Key Laboratory of Coalbed Methane Resource and Reservoir Formation Process,Ministry of Education,China University of Mining and Technology,Xuzhou 221116,People's Republic of China</general><general>School of Earth Resources,China University of Geosciences,Wuhan 430074,China%Key Laboratory of Coalbed Methane Resource and Reservoir Formation Process,Ministry of Education,China University of Mining and Technology,Xuzhou 221116,People's Republic of China%Metal Stable Isotope Geochemistry Laboratory,University of Science and Technology of China,Hefei 230026,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JG9</scope><scope>KR7</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0002-9330-6169</orcidid></search><sort><creationdate>20221201</creationdate><title>Fractionation mechanism of iron isotopes in highly fractionated granites from the Xinxian Pluton, Western Dabie Orogen, Central China</title><author>Deng, Chenglai ; Hu, Changqing ; Wen, Qiuyu ; Yang, Wenbin ; Li, Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a257t-39238be4e081a14461c1dc2044ae94edd3b2947dcf67998ccf9e236f8f361a4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Enrichment</topic><topic>Fractional crystallization</topic><topic>Fractionation</topic><topic>Geochemistry</topic><topic>Granite</topic><topic>Iron</topic><topic>Iron isotopes</topic><topic>Isotopes</topic><topic>Original Article</topic><topic>Orogeny</topic><topic>Plutons</topic><topic>Rayleigh equations</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Solidification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Chenglai</creatorcontrib><creatorcontrib>Hu, Changqing</creatorcontrib><creatorcontrib>Wen, Qiuyu</creatorcontrib><creatorcontrib>Yang, Wenbin</creatorcontrib><creatorcontrib>Li, Wu</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta geochimica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Chenglai</au><au>Hu, Changqing</au><au>Wen, Qiuyu</au><au>Yang, Wenbin</au><au>Li, Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractionation mechanism of iron isotopes in highly fractionated granites from the Xinxian Pluton, Western Dabie Orogen, Central China</atitle><jtitle>Acta geochimica</jtitle><stitle>Acta Geochim</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>41</volume><issue>6</issue><spage>911</spage><epage>925</epage><pages>911-925</pages><issn>2096-0956</issn><eissn>2365-7499</eissn><abstract>Iron isotopes are important for tracing the magmatic process. The fractionation of iron isotopes in granite is up to 0.55 ‰. In this study, Wangjiagou (XWJ) granite and Tayueping (XTY) granite in the Xinxian pluton of the Western Dabie orogen were evaluated. Both the XTY and XWJ granite belong to monzogranites, with high SiO 2 (74.42–76.82 wt.%) contents. The granites are depleted of Nb and Ti but enriched with Pb and K, and they display negative Eu anomalies (Eu/Eu* = 0.40–0.52) on REE plots that are normalized by chondrite. The δ 56 Fe values of the XTY granites vary from 0.19 ± 0.03 ‰ to 0.27 ± 0.04‰, and the δ 56 Fe values of the XWJ granites are 0.34 ± 0.02 ‰ and 0.36 ± 0.01 ‰, respectively. Both the XTY and the XWJ granites belong to highly fractionated granites due to their SI (solidification index), DI (differentiation index), and content of CaO. Evidence from the iron isotopes shows that neither fluid exsolution, alteration, weathering, nor partial melting can explain the enrichment of the heavy iron isotopes. The results modeled using the Rayleigh equation showed that fractional crystallization can produce Δ 56 Fe melt-crystal with the value of 0.08–0.15 ‰. In conclusion, fractional crystallization was the main factor controlling the fractionation of iron isotopes, and the change of melt composition may also lead to the enrichment of heavy iron isotopes in the residual melt.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11631-022-00567-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9330-6169</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2096-0956
ispartof Acta geochimica, 2022-12, Vol.41 (6), p.911-925
issn 2096-0956
2365-7499
language eng
recordid cdi_wanfang_journals_zgdqhx_e202206001
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Anomalies
Crystallization
Earth and Environmental Science
Earth Sciences
Enrichment
Fractional crystallization
Fractionation
Geochemistry
Granite
Iron
Iron isotopes
Isotopes
Original Article
Orogeny
Plutons
Rayleigh equations
Silica
Silicon dioxide
Solidification
title Fractionation mechanism of iron isotopes in highly fractionated granites from the Xinxian Pluton, Western Dabie Orogen, Central China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractionation%20mechanism%20of%20iron%20isotopes%20in%20highly%20fractionated%20granites%20from%20the%20Xinxian%20Pluton,%20Western%20Dabie%20Orogen,%20Central%20China&rft.jtitle=Acta%20geochimica&rft.au=Deng,%20Chenglai&rft.date=2022-12-01&rft.volume=41&rft.issue=6&rft.spage=911&rft.epage=925&rft.pages=911-925&rft.issn=2096-0956&rft.eissn=2365-7499&rft_id=info:doi/10.1007/s11631-022-00567-6&rft_dat=%3Cwanfang_jour_proqu%3Ezgdqhx_e202206001%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731763989&rft_id=info:pmid/&rft_wanfj_id=zgdqhx_e202206001&rfr_iscdi=true