The core-merging giant impact in Earth’s accretion history and its implications
The Earth’s accretion process is accompanied by a large number of collisions. It is widely accepted that collisions dominate the Earth’s late accretion stage. Among all these collisions, there is a special type of collision called Core-merging giant impact (CMGI), in which much or most the impactor’...
Gespeichert in:
Veröffentlicht in: | Acta geochimica 2022-08, Vol.41 (4), p.553-567 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 567 |
---|---|
container_issue | 4 |
container_start_page | 553 |
container_title | Acta geochimica |
container_volume | 41 |
creator | Zhou, You Liu, Yun Reinhardt, Christian Deng, Hongping |
description | The Earth’s accretion process is accompanied by a large number of collisions. It is widely accepted that collisions dominate the Earth’s late accretion stage. Among all these collisions, there is a special type of collision called Core-merging giant impact (CMGI), in which much or most the impactor’s core merges directly with the proto-Earth’s core. This core-merging scenario plays an important role in the Earth’s accretion process and deeply affects the formation of the Earth’s core and mantle. However, because CMGI is a small probability event, it has not been fully studied. Here we use the SPH method to comprehensively study all possible CMGIs in the Earth’s accretion history. We find that CMGI only occurs in the initial conditions with small impact angle, small impact velocity and big impactor. We further discuss the implications of CMGI. We are confident that CMGI inevitably causes the chemical disequilibrium of the Earth's core and mantle. The CMGI process also brings many light elements into the Earth’s core. In particular, if the Moon-forming giant impact is a CMGI, then CMGI can also explain the abnormal content of HSEs in the Earth’s current mantle. |
doi_str_mv | 10.1007/s11631-021-00503-0 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zgdqhx_e202204002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgdqhx_e202204002</wanfj_id><sourcerecordid>zgdqhx_e202204002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-160e501f118075545c65d71046efbce1f74ac1d129804ff27ad692c803407de63</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWLQv4GrAlYvRm9-ZWUqpP1AQoa5DzCQzKW2mTaZoXfkavp5PYuoI3bm4nAv3O-fCQegCwzUGKG4ixoLiHEga4EBzOEIjQgXPC1ZVx2mHSuRQcXGKxjEuAACXQjBWjtDzvDWZ7oLJVyY0zjdZ45TvM7daK53EZ1MV-vb78ytmSutgetf5rHWx78IuU77OXB_39NJptb_Fc3Ri1TKa8Z-eoZe76XzykM-e7h8nt7NcU077HAswHLDFuISCc8a14HWBgQljX7XBtmBK4xqTqgRmLSlULSqiS6AMitoIeoauhtw35a3yjVx02-DTR_nR1Jv2XRoChAADIIm9HNh16DZbE_sDTERFoYKyLBJFBkqHLsZgrFwHt1JhJzHIfdNyaFqmpuVv0xKSiQ6mmGDfmHCI_sf1A1itgAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693090887</pqid></control><display><type>article</type><title>The core-merging giant impact in Earth’s accretion history and its implications</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Zhou, You ; Liu, Yun ; Reinhardt, Christian ; Deng, Hongping</creator><creatorcontrib>Zhou, You ; Liu, Yun ; Reinhardt, Christian ; Deng, Hongping</creatorcontrib><description>The Earth’s accretion process is accompanied by a large number of collisions. It is widely accepted that collisions dominate the Earth’s late accretion stage. Among all these collisions, there is a special type of collision called Core-merging giant impact (CMGI), in which much or most the impactor’s core merges directly with the proto-Earth’s core. This core-merging scenario plays an important role in the Earth’s accretion process and deeply affects the formation of the Earth’s core and mantle. However, because CMGI is a small probability event, it has not been fully studied. Here we use the SPH method to comprehensively study all possible CMGIs in the Earth’s accretion history. We find that CMGI only occurs in the initial conditions with small impact angle, small impact velocity and big impactor. We further discuss the implications of CMGI. We are confident that CMGI inevitably causes the chemical disequilibrium of the Earth's core and mantle. The CMGI process also brings many light elements into the Earth’s core. In particular, if the Moon-forming giant impact is a CMGI, then CMGI can also explain the abnormal content of HSEs in the Earth’s current mantle.</description><identifier>ISSN: 2096-0956</identifier><identifier>EISSN: 2365-7499</identifier><identifier>DOI: 10.1007/s11631-021-00503-0</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Accretion ; Collisions ; Deposition ; Earth and Environmental Science ; Earth core ; Earth mantle ; Earth Sciences ; Geochemistry ; Impact velocity ; Initial conditions ; Light elements ; Original Article ; Probability theory ; The Early Earth: Geochemistry’s Perspective</subject><ispartof>Acta geochimica, 2022-08, Vol.41 (4), p.553-567</ispartof><rights>The Author(s), under exclusive licence to Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-160e501f118075545c65d71046efbce1f74ac1d129804ff27ad692c803407de63</citedby><cites>FETCH-LOGICAL-c353t-160e501f118075545c65d71046efbce1f74ac1d129804ff27ad692c803407de63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgdqhx-e/zgdqhx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11631-021-00503-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11631-021-00503-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Reinhardt, Christian</creatorcontrib><creatorcontrib>Deng, Hongping</creatorcontrib><title>The core-merging giant impact in Earth’s accretion history and its implications</title><title>Acta geochimica</title><addtitle>Acta Geochim</addtitle><description>The Earth’s accretion process is accompanied by a large number of collisions. It is widely accepted that collisions dominate the Earth’s late accretion stage. Among all these collisions, there is a special type of collision called Core-merging giant impact (CMGI), in which much or most the impactor’s core merges directly with the proto-Earth’s core. This core-merging scenario plays an important role in the Earth’s accretion process and deeply affects the formation of the Earth’s core and mantle. However, because CMGI is a small probability event, it has not been fully studied. Here we use the SPH method to comprehensively study all possible CMGIs in the Earth’s accretion history. We find that CMGI only occurs in the initial conditions with small impact angle, small impact velocity and big impactor. We further discuss the implications of CMGI. We are confident that CMGI inevitably causes the chemical disequilibrium of the Earth's core and mantle. The CMGI process also brings many light elements into the Earth’s core. In particular, if the Moon-forming giant impact is a CMGI, then CMGI can also explain the abnormal content of HSEs in the Earth’s current mantle.</description><subject>Accretion</subject><subject>Collisions</subject><subject>Deposition</subject><subject>Earth and Environmental Science</subject><subject>Earth core</subject><subject>Earth mantle</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>Impact velocity</subject><subject>Initial conditions</subject><subject>Light elements</subject><subject>Original Article</subject><subject>Probability theory</subject><subject>The Early Earth: Geochemistry’s Perspective</subject><issn>2096-0956</issn><issn>2365-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWLQv4GrAlYvRm9-ZWUqpP1AQoa5DzCQzKW2mTaZoXfkavp5PYuoI3bm4nAv3O-fCQegCwzUGKG4ixoLiHEga4EBzOEIjQgXPC1ZVx2mHSuRQcXGKxjEuAACXQjBWjtDzvDWZ7oLJVyY0zjdZ45TvM7daK53EZ1MV-vb78ytmSutgetf5rHWx78IuU77OXB_39NJptb_Fc3Ri1TKa8Z-eoZe76XzykM-e7h8nt7NcU077HAswHLDFuISCc8a14HWBgQljX7XBtmBK4xqTqgRmLSlULSqiS6AMitoIeoauhtw35a3yjVx02-DTR_nR1Jv2XRoChAADIIm9HNh16DZbE_sDTERFoYKyLBJFBkqHLsZgrFwHt1JhJzHIfdNyaFqmpuVv0xKSiQ6mmGDfmHCI_sf1A1itgAk</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Zhou, You</creator><creator>Liu, Yun</creator><creator>Reinhardt, Christian</creator><creator>Deng, Hongping</creator><general>Science Press</general><general>Springer Nature B.V</general><general>CAS Center for Excellence in Comparative Planetology,Hefei,China%Center for Theoretical Astrophysics and Cosmology,Institute for Computational Science,University of Zurich,Winterthurerstrasse 190,8057 Zurich,Switzerland%Department of Applied Mathematics and Theoretical Physics,Centre for Mathematical Sciences,University of Cambridge,Wilberforce Road,Cambridge CB3 OWA,UK</general><general>CAS Center for Excellence in Comparative Planetology,Hefei,China%International Research Center for Planetary Sciences,College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China</general><general>State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,China</general><general>International Research Center for Planetary Sciences,College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JG9</scope><scope>KR7</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220801</creationdate><title>The core-merging giant impact in Earth’s accretion history and its implications</title><author>Zhou, You ; Liu, Yun ; Reinhardt, Christian ; Deng, Hongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-160e501f118075545c65d71046efbce1f74ac1d129804ff27ad692c803407de63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accretion</topic><topic>Collisions</topic><topic>Deposition</topic><topic>Earth and Environmental Science</topic><topic>Earth core</topic><topic>Earth mantle</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>Impact velocity</topic><topic>Initial conditions</topic><topic>Light elements</topic><topic>Original Article</topic><topic>Probability theory</topic><topic>The Early Earth: Geochemistry’s Perspective</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Reinhardt, Christian</creatorcontrib><creatorcontrib>Deng, Hongping</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta geochimica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, You</au><au>Liu, Yun</au><au>Reinhardt, Christian</au><au>Deng, Hongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The core-merging giant impact in Earth’s accretion history and its implications</atitle><jtitle>Acta geochimica</jtitle><stitle>Acta Geochim</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>41</volume><issue>4</issue><spage>553</spage><epage>567</epage><pages>553-567</pages><issn>2096-0956</issn><eissn>2365-7499</eissn><abstract>The Earth’s accretion process is accompanied by a large number of collisions. It is widely accepted that collisions dominate the Earth’s late accretion stage. Among all these collisions, there is a special type of collision called Core-merging giant impact (CMGI), in which much or most the impactor’s core merges directly with the proto-Earth’s core. This core-merging scenario plays an important role in the Earth’s accretion process and deeply affects the formation of the Earth’s core and mantle. However, because CMGI is a small probability event, it has not been fully studied. Here we use the SPH method to comprehensively study all possible CMGIs in the Earth’s accretion history. We find that CMGI only occurs in the initial conditions with small impact angle, small impact velocity and big impactor. We further discuss the implications of CMGI. We are confident that CMGI inevitably causes the chemical disequilibrium of the Earth's core and mantle. The CMGI process also brings many light elements into the Earth’s core. In particular, if the Moon-forming giant impact is a CMGI, then CMGI can also explain the abnormal content of HSEs in the Earth’s current mantle.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11631-021-00503-0</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2096-0956 |
ispartof | Acta geochimica, 2022-08, Vol.41 (4), p.553-567 |
issn | 2096-0956 2365-7499 |
language | eng |
recordid | cdi_wanfang_journals_zgdqhx_e202204002 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Accretion Collisions Deposition Earth and Environmental Science Earth core Earth mantle Earth Sciences Geochemistry Impact velocity Initial conditions Light elements Original Article Probability theory The Early Earth: Geochemistry’s Perspective |
title | The core-merging giant impact in Earth’s accretion history and its implications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20core-merging%20giant%20impact%20in%20Earth%E2%80%99s%20accretion%20history%20and%20its%20implications&rft.jtitle=Acta%20geochimica&rft.au=Zhou,%20You&rft.date=2022-08-01&rft.volume=41&rft.issue=4&rft.spage=553&rft.epage=567&rft.pages=553-567&rft.issn=2096-0956&rft.eissn=2365-7499&rft_id=info:doi/10.1007/s11631-021-00503-0&rft_dat=%3Cwanfang_jour_proqu%3Ezgdqhx_e202204002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693090887&rft_id=info:pmid/&rft_wanfj_id=zgdqhx_e202204002&rfr_iscdi=true |